Die Bonding System의 개발

Development of Automatic Die Bonder System for Semiconductor Parts Assembly

*: KAIST, **: Hanyang Univ., ***: Samsung Aerospace

ABSTRACT

In this paper, the design and implementation of a multi-processor based die bonder machine for the semiconductor will be described. This is a final research results carried out for two years from June, 1986 to July, 1988.

The mechanical system consists of three subsystems such as bonding head module, wafer feeding module, and lead frame feeding module. The overall control system consists of the following three subsystems each of which employs a 16 bit microprocessor MC 68000: (i) supervisory control system, (ii) visual recognition / inspection system and (iii) the display system.

Specifically, the supervisory control system supervises the whole sequence of die bonder machine, performs a self-diagnostics while it controls the bonding head module according to the prespecified bonding cycle. The vision system recognizes the die to inspect the die quality and deviation / orientation of a die with respect to a reference position, while it controls the wafer feeding module. Finally, the display system performs a character display, image display ans various error messages to communicate with operator. Lead frame feeding module is controlled by this subsystem.

It is reported that the proposed control system were applied to an engineering sample and tested in real-time, and the results are successful as an engineering sample phase.

I. 서론

반도체 소자용 자동 다이본더를 개발하기 위한 본 연구는 '86년 6월부터 '88년 7월까지 2년동안 수행된 연구로, 기존의 1차원 떨어지는 다이본더를 현장에서의 신뢰성 및 제작, 구동장치의 설계 및 일부 제작, 전체 시스템의 공정적바장치 설계 및 제작을 목표로 하였고, 2차원도에서는 최신 모델을 기준으로 전체 기구의 제작 및 전자 제어부의 보완, 기능 추가 및 전체 시스템의 Engineering Sample 제작 및 실험을 목표로 하고 있다. 이러한 목표를 달성하기 위하여 제공적인 방법으로, 국내외 관련 문헌자료 수집과 기존제품의 입수를 통한 절실한 분석 및 사양(spec) 확정, 그리고 한국과학기술원에서 이미 촉진된 관련 기술 및 연구동력과 기업에서 촉진된 제작 기술을 최대한 활용하여 이를 바탕으로 독자적인 모델을 개발하는데에 중점을 두었다.

본 연구에서 기술적으로 해결한 주된 문제점은 다음과 같다. 먼저, 원본 기기의 기술적·기능적인 제한으로 인해 재료와 모듈간의 연동 및 간격을 차동으로 합산으로써 전체 공정의 신뢰도 및 생산성을 높이기 위해 기술로서, 카메라를 이용해서 화면을 빠른 시간대에 더욱 정확한 주요 정보로 바꾸어 처리하는 실시간 업무장치(image digitizer)와 그로부터 얻어진 시각정보로부터 작업내용에 필요한
형상인식 능력이 종주를 이루고 있다. 둘째는 다이버터 장치를 구동시키는 전동기의 조절용의 위치제어 및 고장소실 제어기로서 전 조립 차동의 시스템의 정밀성과 신뢰성 및 생산성에 직접적인 영향을 미치는 주요 기술이다. 이에 사용되는 전동기로는 전류식보로사와 스트레터로서, 높은 가속력과 고속제어를 필요로 하는 곳에서 전류식보로사를 사용하고, 그 보다는 저속이지만 높은 정밀도를 요구하는 위치제어는 제어가 보다 유연하고 브러시 및 정류자가 없는 관계로 신뢰도가 높고 특히 정밀원적에서의 작동이 거의 없는 스트레터를 사용하고 있다. 셋째로는 분담재에 부(Bonding head module), 외어와 공동부(wafer feeding module) 및 리드프레임 공급부(lead frame feeding module) 등으로 구성된 구루부의 설계 및 제작으로써 분담재 유닛(unit), 클램퍼(plunge-up) 유닛, 분담재 XY 테이블, 리드프레임 인력장치(loader), 공급장치(feeder), 클램퍼(clampcr), 인로디(unloadcr), 저장기(stacker) 및 웨이퍼 인력장치(loader), 공급장치(feeder), XY 테이블, 인로디로 구성된다. 네번째로는 이들이 조합된 전체 시스템을 관리하는 시스템으로 동작시키기 위한 관리미어 기계로서, 주어진 시간내에 동작하면서도 보다 생산성을 높여기 위하여 여러 계의 마이크로프로세서를 사용하여 각 부분별로의 기능을 건달시키고 이들 사이의 수행결과를 Pipe-Line 방식으로 연결하여 중괄 관리하는 관리기술이다. 이에 사용자에 관리한 시스템 운영연어를 개발하고, 역시 사용자의 편의를 도모하기 위한 User-Interactive 외연표시 기술, 고장시 처리할 수 있는 자가진단 기능도 설계해 함께 고려한 사항들이다. 또한 전체 시스템의 보수성과 신뢰도를 기하기 위하여 가로부는 이동용기법이 없으면서 각 장치들이 쌍합이있게 배치되도록 하였고 제어기는 하드웨어 구성이 간단하도록 여러 방법들을 고안하여 설계하였다.

이와 같이 설계한 가로부 및 체계시스템은 각각 시험단계를 거쳐 조합하여 전체 시스템을 구성함으로써 1차년도에 Working Sample을 제작하였고, 성능이용률을 통해 다이버터로서의 추진 기능과 사양이 만족스럽게 수행되고 있음을 보였다. 이러한 1차년도의 연구결과를 바탕으로 가로부의 활성 제작, 전자부의 기능 추가 및 문제점 보완을 거쳐 2차년도에서는 다이버터 시스템의 고유 기술 보뿐만 Engineering Sample을 설계 제작하였고 수차의 성능시험을 거쳐 안전성을 갖추고 있다. 그러나 실제 공정에서의 공정합격 거쳐 보다 안정화되고 신뢰도가 향상된 제품을 개발하는 것과 상품화는 rapidly 계획 연구되어야 한다고 사료된다.

II. 체계시스템 개요

반도체 소자용 자동 다이버터 기계장치는 기구부, 관리장치 시스템, 업상처리 및 웨이퍼(wafer) 공급기능을 갖는 다이진사(die inspection) 및 카운트시스템과 각종 다스커를 및 방산처리가능을 수행하는 다스플레이시스템으로 구성된다. 각각의 기능을 삼차분할 다음과 같다.

2.1 기구부

기구부는 크게 나누어, 다이를 검어서 리드프레임(lead frame)에 정착하는 분담재부(bonding head module), 다이를 시가시스템의 인식이 가능하고 분담재의 위치(pick-up)이 원하는 위치까지 공급하는 웨이퍼공급부(wafer feeding module), 리드프레임을 분담이 가능한 위치까지 속도적으로 이송시키는 리드프레임 이송장치(bond frame feeding module) 및 각각 루덕(loading) 인로디(unloadcr) 장치로 구성된다. 설계된 체계시스템은 (그림1)과 같고, 제작된 기구부의 묶음체는 (사진1)과 같다.

분담재부는 분담재의 운동경로를 기구적으로 만들어주는 YZ-motor, 분담재의 높이를 미세하게 조절할 수 있는 Level-motor, 고정된 YZ-motor의 운동범위에 넣어서 멀티분담(multi-bonding)을 가능하게 해주는 분담재 XY-table, 다이 절단시 머리에서 다이를 분리시켜 주는 웨이퍼 몇몇에서 다이를 분리시키려 하여 빠르고 민첩하게 작동을 이용하여 운동치는 물리적(Plunge-up) 리드프레임에 다이를 정착한 수 있도록 액체(epoxy)를 몰입시키려는 액체의 다스커-dispenser와 다이를 몰입(collet)에 정착하기 위하여 전공량을 만들어주는 전공발생장치등으로 구성된다.

웨이퍼공급부는 공급되는 다이의 위치인식 및 검사물
그림 1. 다이본더 전체시스템의 구성

사진 1. 다이본더 시스템 외관

위한 현미경(microscope), 카메라, 모니터(monitor), 화이어를 가로 및 세로축으로 이동시키는 XY-table, 화이어가 놓여있는 각도를 조절할 수 있는 화이어 호환자(jig holder), 여러 장의 화이어를 저장하고 있으면서 화이어를 시스템 내 공급해주는 화이어 저장기(wafer loader)와 화이어 저장기에 화이어 호환자까지 화이어를 이동시키는 화이어 이송기(wafer feeder) 등으로 구성된다.

리드프레임 이송장치는 좌우측의 리드프레임을 장애주는 좌우 클램프(clamper), 리드프레임을 빠른 속도로 이동시키는 프레임피더(frame feeder), 리드프레임 이송장치의 넓이를 조절할 수 있는 프레임 넓이조정 모터, 본딩을 위하여 공급된 리드프레임이 노출되기 앞서는 고정장치는 좌우 클램프(window clamper), 리드프레임을 여러 장 저장하고 있다가 한장만을 분리하여 공급하주는 프레임공급기(frame loader)와 본딩된 리드프레임을 보관하는 프레임 저장기(frame stacker) 등으로 구성된다.

2.2 시스템 개요

전체 시스템의 개요는 크게 관리시스템, 저장시스템, 디스크리직 시스템, 인터페이스 시스템으로 구성된다. 구현된 관리시스템의 구조는 (그림 3)과 같다.

2.2.1 관리시스템

관리시스템은 여러 부분으로 구성된 부시스템들이 전체 시스템의 사양에 맞는 동작을 하도록 중합 조정하는 시스템으로서, 일의 관리 및 조정, 명령수행의 지시 및 명령수행결과의 확인을 반복 자동화, 사물과 시스템간의
그림 2. 다이본더 시스템 제어부의 구성

혼선가능을 수행한다. 또한 초기의 시스템 설치시 기구부의 각 부분을 미세조절할 수 있는 시스템 조정 및 반수반한 기능을 둘로 평화한 본동을 위한 타이밍(timing) 조절 및 손차계어능. 시스템 고장발란 및 저리기능을 포함하고 있다. 이때 관리엔시스와 각 부시스템간의 통신 및 정보교환은 본도로 구성된 공유메모리(static common memory)를 통하여 이루어진다. 그리고 본림헤드부와 리드프레임 여름부 및 풀린지 알의 동작을 직접 제어하고 있다.

이상의 기능을 수행하기 위하여 관리엔시스와, 시스템의 관리와 조정 및 통신을 위한 1차 Background 입구와 본딩 작업시 타이밍 조절을 위한 2차 Background 입구, 그리고 시스템 고장망시를 위한 3차 Background 작업 및 각종 구동부를 구동하고 사이언스의 헬름을 통제하는 Foreground 작업들은 인터럽트(interrupt)에 의해 고워수행한다 [3-5].

2.2.2 시각 시스템

다이본더 공정의 자동화를 위해서는, 웨이퍼상의 다이의 위치를 정확히 인식하고 다이의 양, 폭량을 확실하게 구분하여 인간의 시각능을 대신할 수 있는 장치가 필요하다. 이를 위하여 시각시스템을 이용하는 바카메라와 마이크로스코프를 이용하여 웨이퍼의 영상을(image)을 잡고, 설정된 하드웨어와 소프트웨어로 구성된 양상처리 기능을 수행하게 된다. 다이본딩 기계장치를 위하여 제작된 시각시스템은 양상메모리, 양상 디지타이저(digitizer) 및 양상 은반인 프로세스로 구성하였다. 그리고 다이의 위치인식 및 풀린검사를 위하여 오프라인(offline) 및 온라인(online)작업을 위한 소프트웨어가 구현되었다.

오프라인 작업(신파작업)이라면 실시간 은반인 작업을 위하여 필요한 정보를 수출하는 작업으로서, 이전양상을 연기한 양상검정, 전체 웨이퍼의 정식안전검, 웨이퍼상의 다이의 크기측정, 외관과 품질을 스펙트로사이의 관계식 결과 및 해프리가 최초로 입력되었을 때 처음으로 본딩한 다이(headchip)을 찾는 작업들을 수행한다. 온라인(반복작업)은 400 msec(양상처리 시간)이내에 다이의 위치인식 및 검사와 다이의 풀린검사를 수행하는데, 본딩의 정밀도를 보장하기 위하여 인식도가 높아야 한다.

이상의 양상처리를 위하여, 시각시스템 제작 및 양상(threshold) 추출 알고리즘, 다이의 크기 인식 알고리즘과 다이의 위치인식 및 검사 알고리즘[6]의 구현은 이미 1차년도 연구에서 완료되었고, 마 2차년도 연구에서 구현된
그림 3. 시각시스템의 구성

알고리즘과 음란인 책임의 위치에 따른 민감도 및 값을 대응하는 외부모니터의 사용성을 측정한 데이터를 측정하였다.

영상처리를 위하여 사용한 시각장치[7]는,

(1) 해상도(spatial resolution)가 256 x 256,
(2) 밝은도(brightness resolution)가 256단계

로, 외부에서 수평동기신호, 수직동기신호를 공급해 주는
외부동기용 카메라를 이용한다. 그리고 몇차의 요약 가능, 빠른 입력, 임의의 카메라 형태로 밑면의 인식을 위하여
카메라에는 마이크로프로세서가 장착되어 있다. 사용된
시각장치는 (그림 4)와 같은 구조를 갖는데, 부분별로
살펴보면 다음과 같다.

시각장치를 총괄하는 중앙처리장치는 Mc68000 CPU를
기초로 하여 VME-bus 사양[8]에 맞게 설계한
마이크로컴퓨터(micro-computer)를 사용한다. 이 마이크로
컴퓨터는 적절한 조건을 위한 인식단위와 경사도를 결정하는
알고리즘을 실시간 처리가 가능한 영상처리 알고리즘을
구현한 내장시스템으로서 조립과정에서 필요한 기능을 수행할
수 있다.

영상처리 터미널로부터 입력된 영상 정보를 받아
디스플레이하는 영상 디지타이저(digitizer)[9]는, 카메라로
부터 입력되는 아날로그 영상신호 (analog video signal)를
6.9 MHz의 속도로 샘플링 후 추출하여 한 프레임 (frame)의
영상은 256 x 256 (64K) 바이트 (byte)의 그레이 스케일
영상(gray level image)으로 변환하여 주는 A/D 변환기.
처리된 디지털 영상을 아날로그 영상 신호로 만들어 주는
D/A 변환기, 각 하드웨어에 핫셀클럭(pixel clock)과
동기신호를 공급하는 검색기능(generator, clock generator)로
구성된다.

영상매모리(frame grabber)[10]는 영상 스펙터라이저로
부터 입력되는 그레이 스케일 영상과 음란인 영상 프로세서
(online processor)로부터 입력되는 이진영상은 6.9 MHz의
속도로 저장한다. 영상처리를 수행하는 중앙처리장치와
영상매모리를 리프레시(refresh) 하는 매모리 장치가
호환적으로 영상매모리를 사용할 수 있도록 memory cycle
contension problem을 해결하기 위하여 256 회로의 데이터를
일단 256 비트의 셔프트 리프레시(shift register)에
저장했다가 한편에 메모리에 저장할 수 있는 이중 입출력
메모리 (dual port video RAM)인 TMS 4161을 사용하여
구성되어 있다.

실시간 영상처리를 위하여 설계한 음란인
영상프로세서(online image processor)는 영상 디지타이저로
2.2.3 디스플레이 시스템

디스플레이 시스템은 시스템 동작중이나 시스템 변경 및 시스템 미세조절에서 필요한 정보를 사용자에게 보여주기 위해 모니터를 통한 보여주고, 직렬 및 원본을 포함한 그래픽 디스플레이 기능을 수행한다. 특별 사용자의 관리자는 위하여 가능한 많은 정보를 디스플레이 하도록 설계되었다. 그리고 해이지 장치 및 급료장치, 리드프레임 분리기 및 저장기를 직접 제어하여 본디시틀링에서 시간이 많이 소비되는 부분을 독립적으로 운영하고 있다.

2.2.4 인터페이스 시스템

제작된 다이버타 기계장치는 적절히보머 4개, 스텝모터 12개, 교류(AC)모터 1개 및 솔레노이드(solenoid) 15개와 70개의 센서(sensor)등으로 구성되어 복잡한 시스템이다. 따라서 각 부분의 라이프 스타일과 특정 기능을 위한 센서들을 처리할 수 있는 센서링 하드웨어, 솔레노이드 구성을 위한 제어 및 구동 하드웨어 및 시스템 비상상태 처리 및 정확한 다이빙 구현을 위한 인터럽트 처리 하드웨어를 구현하여 프로세서가 전체 시스템의 상태를 관리 및 문제해결을 수 있도록 하였다.
기여하였다. 어쨌든, 전문가가 아닌 사용자가 관리하게 시스템을 사용할 수 있도록 각종 작업상태 및 입력 정보, 출력 정보등을 디스플레이하는 시스템을 개발하였는 바 기존의 방식에 비하여 편리함의 활용도를 증가시킬 수 있는 하드웨어 설계 제작하였다.

이와 같이 총 2년동안의 연구결과는 외국의 최신 모델을 기준으로 한층 더 기능이 고급화된 국내 고유모델을 개발하였는 바 본 연구결과를 이용하여 Engineering Sample을 설계, 제작 시험하려 요구되는 기능 및 사양을 만족하는 시스템을 구현하였다. 본 연구결과를 토대로 앞으로 충분한 기간동안의 현장 테스트를 거쳐 개발된 제품의 안정도 및 신뢰도를 향상시킨 후 공마로 반도체 제조공장에 도입될 수 있는 상품화에 대한 노력을 계속하고자 한다.

참고문헌

[9] 이태영, "Fast Memory Display System을 이용한