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Abstract— We propose a robust internal loop com-
pensator and its optimal design method based on Hy
control. The conirolier consists of two parts, internal
and external loop. Internal loop is used as a compen-
sator for canceling disturbances including difference be-
tween reference model and real system, and external
foop is designed to meet the performance criterion. The
property of the internal loop compensator is compared
with that of disturbance observer. D'ifferent from the
disturbance observer, controller gains and @ filter can
be systematically designed, instead of heuristically se-
fected, in the proposed internal loop compensator struc-
ture. The proposed controller structure of internal and
external loop is characterized by compensator design us-
ing reference model, insensitivity of the compensated
system to modeling inaccuracies and unknown exter-
nal disturbances, and satisfaction of desired performance
specifications. The performance of propesed controller
is demonstrated by experiments of a twin-servo mecha-
nism using two brushless DC linear servo motors.

I. INTRODUCTION

Recently, high speed and high accuracy motion con-
trol is one of the most interesting research field as the
products become smaller and faster such as data storage
or semi-conducting devices. To mee: these high per-
formance specifications, conventional optimal control
methods such as linear quadratic(LQ) control have been
widely used. However, mathematical description of the
system can not represent real plant exactly, and unpre-
dictable disturbances affect the performance if they are
not properly attenuated.

This paper focuses on disturbance estimation and at-
teruation scheme in order to guarantes desired perfor-
mance specifications. Various methods for this purpose
have been proposed. Time delay cont:ol[1, 2] based on
direct estimation of disturbance using time delay, and
disturbance cbserver[3, 4] which makes the behavior of
real system as that of given nominal system in low fre-
quency region using low pass filter are good examples.
But these methods are not so generic and have not op-
timality. Adaptive robust control[3] was proposed to
preserve the advantages of both adaptive control and
robust control based on sliding mode concept.

In this paper, we propose a robust controller synthe-
sis method, The objective is to design robust compen-
sator for disturbance attenuation and to provide opti-
mization concept in this compensator design procedure.
Therefore the controller has two independent control
loop, namely, internal and external lcop. The internal
loop is used as a compensator rather than a controller,
so we call this internal loop compensutor and external
loop is used as a controller, we call this ezternal ioop
controller. Internal loop compensator is for the rejec-
tion of uncertain disturbances, and tien controliers of
advanced motion planning can be integrated in the ex-
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ternal loop after the internal loop design. So their char-
acteristics can be designed independently to meet each
objective.

In the next section, robust internal loop compensator
and optimization method based on H.o control is pro-
posed and compared with conventional disturbance ob-
server. In section III, we deal with the design of ex-
ternal loop controller using twin-servo system with two
brushless DC linear motors. Experimental results of
the system are shown in section IV, and conclusion fol-
lows.

II. RoBUST INTERNAL LooP COMPENSATOR
DESIGN AND OPTIMIZATION

The most important objective of a control system is
to achieve certain performance specifications as well as
providing stability of the system. Generally, conven-
tional controller is determined by only one controller,
so it is difficult to meet these two design requirements at
the same time. In comparison with this, the well known
2-degree-ol-freedom (DOF) controller has the feature
that one can design the command input response and
the closed loop characteristics independently[67. In this
section, we propose a robust internal loop compensator
based on model following scheme with 2-DOF control
structure, and we focus on optimal design method of
the compensator in Ho control framework.

Firstly, we consider multivariable system described
by the following dynamic equation

& =Ax + Bu
Plant P : y=Cz (1)
B = Am®m + Bty
M A
odel P, y. = i, (2)

where & € R” is plant state, &, € R” is model state,
u € R" is plant input, ©,, € R" is model input, y ¢ R”
is plant output, y,,, € K" is model output, and A, B, C,
A, By, C,, are matrices of appropriate dimension.
Without loss of generality, we assume that (4, B) is
controllable and (C, A) is cbservable. The reference
model has piecewise continuous and uniformly bounded
input w.,, and state x,,.

To analyze stability and performance, we define the
model error e, as the difference between the reference
model state and the plant state,

em = Ly — L. (3)

From (1), (2), we can get the following error dynamic
equation

€m = Ay, + By, — (Az + Bu). {(4)
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Fig. 1. Moedel Following Conirel System

Now, we use model following controller[7] in Fig. 1, and
define control acticn u that has the following form:

u = Ky, + Ky, - Kz (5)
Then we can get the equation of error e, as follows

ém =(A,, - BK,))e,, + (B, - BK,)u,,

+{A,-A+B(K,-K,)) = (6)

To achieve perfect model following, following equatious
have to be satisfied:
K..-K,=B%A, - A),

(7
K,=B*B,,. @

Therefore sufficient conditions for parfect model foliow-
ing are obtained as

(I- BB*)(Am - A =10,

(I - BBY)B,, = 0. ®)

(8) holds if the matrix (I — BB™) is orthogonal to
(Apn — A) and to B,,. If reference model and the
plant have a Luenberger controllable canonical form,
then this property is always satisfied|[7, 8] and perfect
model following is achieved.

A. Robust Internal Loop Compensator Design

In most control problem, however, (8) can not be sat-
isfied because we cannot accurately describe uncertain-
ties and parameter variations of piant in real environ-
ments. Consider the following multivariable dynamic
system with parametric uncertainty

& = Az + Bu + L A(z) - A B(u),
y=Czx+ AC(z),
where A A(z), AB{u) and AC(z) are nonlinear time-

varying parametric uncertainties with the following
known upper norm bounds.

lAA(Z)]| < 5 [l=|]
lAB(u)] < Bz [l (10)
IAC (@) < Bs [lac]

(9)

In order to design robust compersator, we firstly se-
lect gains in (5) as follows

K.,.=K,=K, F,=1 (11)
It is sometime impractical to use fuil state of plant in
real environments, hence we need to derive compen-
sator equation using only plant ou’put signal. There-
fore the dynamic controller is represented as follows

u:um+K(ym_y)

= Uy + KCpzm — KCz — KAC{x). (12)

Fig. 2. RIC Structure Based on Medel Following Controller

This structure can be described in Fig. 2, and we will
dertve varicus properties of this controller structure to
get robustness. This structure is called as RIC(robust
internal-loop compensator) based on model following
controller.

Combining (2), (9), and (12), we get the differential
equation of error e,,, which can be written as

ém 2 Fe,, +w, €,(0) = €mo. (13)

where
FE=A,-BKC,,
w=(A,-A-BK({C,-C)z+(B,, - Blun
- (AA(z) + AB(u) - BKAC(z)).

From the above equation, we can get the boundedness
of w using the assumption of (10)

llwl|l < m llewll + e, (14)
where
& =||Am — A- BKC,, + BKC]|,
by = ”Bm - B,

m =0+ 51+ 5 HKC” + 825; ||K]| + 83 ”BK“ 3
e = {61+ B + B | KC|| + 5 | KC x| + 828: || K||
+ B3 || BK||) [|[zm || + (62 + B2) || -

Thus, the compensator design problem is to choose
the parameters A,,, Bm, Cy,, and K in (2) and (12)
such that the model error system (13) is stable, ie.,
the uncertainties can be tolerated in the design and the
coinpensator has a robustness.

Theorem 1: Suppose the nonlinear parametric uncer-
tainties are bounded by (10) and if we choose the con-
trol parameters of (12) such that the nominal model
error system (15) is asymptotically stable and the in-
equality of (16) is satisfied

ém = Eem, (15)
a > ma, (16)

where o is defined in Appendix, then the nonlinear
parametrically perturbed error system of (13} is sta-
ble, and there exist o, T < oo satisfying |len (t)|] <
€, ¥t > T for given allowable state error ¢ > (), i.e., the
nonlinear perturbations AA(z), AB(u), and AC(x)
can be tolerated in the sense of bounded error.

Proof.

Remark 1: Suppose the parametric uncertainties in
(9) can include the difference between real system and
reference model, then we can set A = 4,,,, B = B,,,
C = C,,, and then, & and &: become zero.

The proof is given in Appendix. |

Remark 2: Assume that the system of (9) is bounded
input and bounded output{BIBO) stable, then {|w|| <
é. where 6, > 0 is some constant and we can choose
o> —’?‘fs—ﬁ to make stable system.
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B. Optimal RIC Design in the Ho, Framework

In the previous section, we can ses that the perfor-
mance of internal loop compensator is determined by
the K. That is, if K is selected to satisfy (16) by using
Theorem 1, RIC makes the cutput of real system track
the output of reference model with allowable error. Al-
though the high gain property in the internal structure
can extend the bandwidth of control loop, this high gain
has a limit by considering performance and robustness
and should be optimized.

For the robustness, many disturbance compensating
methods have been proposed using various concepts.
Among them disturbance observer has easy conceptual
basis and simple structure to real implementation, so
this is being used widely in high accuracy and high
speed control applications. Its main idea is that the
difference between real system and nominal model is
regarded as disturbance and it can estimate the magni-
tude of disturbance by applying inverse nominal model
at the output of system. Therefore low pass filter Q is
appended for real implementation, the cut-off frequency
of ¢ is assigned to reject the disturbances. However the
disturbance observer is weak to nonlinear disturbance
because it is designed by linear control theory. More-
over the performance is affected by the shape of Q and
@ is embedded in explicit function, then it is difficult to
optimize ¢ considering the performance and robustness
criterion of given task.

In comparison with disturbance chserver, the RIC
has more general mechanism for the rejection of distur-
bances. As the @ is included in the implicit function
form in our formulation, the proposed structure also has
similar properties of disturbance observer. () is repre-
sented by RIC paramsters and its shape can be opti-
mized by considering the characteristics of disturbarice
and real system. In addition to these, the limitation of
disturbance observer such as performance degradation
on the nonlinear disturbance can be cvercome using
additional adaptive or robust algorithms because our
structure is using the model error defined by the dif-
ference between real system state and reference model
state. In this section, we will deal with the optimization
schemes of RIC.

We begin by assuming that the system can be repre-
sented by Luenberger controllable canonical form and
disturbance comes through input channel. Then (1) is
divided into rth block terms with p;th order(Kronecker
invariants) differential equation with disturbance d; as
follows

&; = Ao + byu; + bid;, P=1,2,...,7 (17
And we design the reference model having the following
form;

A = diag{Am1, Amso, ... Aprt,

248 1 3

Bm = diag{bm,lg bm,2,- v I;m,r}; ( Sj

where A,,; € R=*#(i = 1,...,r) is in controllable
canonical form and b, ; € BR* is written as

bri=[0 0. 1], (18)

pith
Reference model is also divided into r#h SISO model

i=12,...,r, (20)

LTm,i = Am,iﬂ:m,i + bm,ium,i:

Qi,au{

Yi

Wi 1
Renammane |

g 1
I_Qs Pmi +

{b) Equivalent Structure of RIC Using @
Fig. 3. Function  and Eguivalent Structure of RIC

and the controller can be designed for each system.

Using the formula (12), it is easy to show that the
control input has the following representation with vari-
able s of Laplace transformation

ui(8) = {1 + Ki(8) P 5 (5)} wm,i(s) — Ki(s)yi(s) (21)
+ di(s)}

where Py, ; is defined by
Pm,i(s) = Cm,i(sI - Am,i)*lbm’i.

Let’s take a SISO example of Fig. 3(a) to heip un-
derstanding of the property of this RIC compensator.
We define the transfer function Q; which controls Py, ;
using feedback controlier K; as shown in Fig.3(a). Q;
is described as

P K;

Qs 1 +Pm!iKi‘ (22)
If we recalculate this equation to K, and plug this
K; into Fig.2, we obtain Fig.3(b) with output sen-
sor noise £, which is a well known structure of dis-
turbance observer[4]. Therefore optimal RIC design
problem becomes the optimization problem of K for
reference model P, because the performance is charac-
terized by K and P,,. Note also that the above struc-
ture of internal loop compensator can be expressed as a
form of disturbance observer and our proposed internal
compensator structure has very general characteristics
although it was derived from mode! following concept.
It is well known that the disturbance observer makes
the system robust by using low pass filter ¢ which cuts
off the external disturbances in low frequency region.

Needless to say, the optimal shape of € is obtained
based on how P, and K are designed as shown above.
Note also that this design of @ in conventional distur-
bance observer structure iz very heuristic because in
disturbance observer, it is very difficult to apply opti-
mality concept in the design of Q. However, in RIC
structure, it is very simple. As mentioned previously,
the RIC is determined by the reference model P, and
feedback controller K and also can be described by low-
pass filter @ through (22) simultaneously. If we can
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Fig. 4. Optimization of RIC by Heo Mixed Sensitivity Method

design optimal K using the above properties of RIC,
the performance can be enhanced.

From Fig.3(a), the sensitivity Sy, and complemen-
tary sensitivity Tp, of ¢} are obtained by

1 P K

SQ‘. - 1+Pm,iKi1 Ta. = 1'+Pm,?;.Ki.

(23)

We use H,, mixed sensitivity method to determine
optimal compensator gain K as shown in Fig. 4. This
is another advantage of RIC structure other than ro-
bustness in that the structure accepts the optimality
concept in designing & or K. In the mixed sensitivity
problem formulation, nominal disturbance attenuation
specifications and stability margin specification equa-
tions are combined into a single infinity norm speci-
fication. Now, the mixed H,, sensitivity problem is
formulated as follows;

min
K;

Wl,i(]. + Pm,iKi)—l
[WQ,iPm’iKi(l + P K N < 1 (24)

Since (24) uses reference model parameter, this equa-
tion can be solved easily and we can assign frequency
characteristics of ;. The result of this design will be
described in the experiment sectior.. This concept for
SISO example can be applied to the general system
similarly.

Remark 8: To compensate nonlinear disturbances we
can append additional control algorithm to (12) such
that

U=Un+ Ky, —y)+ 5y vy, (25)

where F(y,y,,) is robust or adaptive algorithm to at-
tenuate €,,.

III. MoTion CONTROLLER DESIGN FOR
TwiIN-SERvO LINEAR MOTOR SYSTEM

After the robust internal loop compensator design,
which is the main objective in this paper, we are to
design external loop controller. As described in the
previous section, the external controller can be easily
designed using conventional advanced control schemes.
This is possible due to the robust irternal loop design.

The system we are dealing with in this paper is the
twin-servo precision linear motor system to increase the
payload capacity and speed as shown: in Fig. 5.

Friction identification is the first important proce-
dure of controller synthesis[9] to achieve precision posi-
tioning performance. However the structure itself has
strong nonlinear friction characteristics, and irregular

Fig. 5. Twin-Servo Precision Linear Motor System

Fig. 6. Robust Motion Control Structure Based on RIC

gap between core and permanent magnet brings abou:
parameter variation. Moreover force ripple caused by
variation of magnetic force and inaccurate placemen:
of the permanent magnet make control problem more
difficult.

A. Precision Motion Control

RIC is used to compensate different dynamic charac-
teristics of two motors as shown in Fig. 6. In this figure
the transfer function from reference input to position
output is given by

3 C(1 + KP,,)P
1+ PK+C(I+ KP,)P’

G (26)

where C is an external loop feedback controller. When
we express the plant having uncertainties as

P = Pyl + Ap), (27}

then the robust stability of the above multiplicative un-
certainties can be stated in the following theorem.

Theorem 2: If the plant is modeled with multiplica-
tive uncertainties as shown in Eq.(27), the necessary
and sufficient condition for stability of the closed loop
system for the uncertainty Ap is

(28)

TP H1+KPm+C(1 + KPp)Pr, H
p

KPn+C(l+ KPPy,

Proof. The proof can be easily derived, see Doyle
etal[11]. n

From Theorem 2, we can design external loop con-
troller C' to stabilize two linear motor systems. To
satisfy performance specifications, C' is designed based
on reference model after the system is compensated by
RIC.

IV. EXPERIMENTAL RESULTS

The proposed robust internal loop compensator algo-
rithm is experimented with external control loop. Dy-
namic equation of the system is written as a second
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TABLE I
PARAMETERS OF TWIN-SERVO SYSTEM

[Parameter | M | B |
X1 055 ] 0.45
X5 0.4 03

order differential equation as
Mz +Ufric(.’5,i°) +urippge($‘3) +d=u (29)

with inertia M, friction force wgys., force ripple term
Upipple, POSItION variable z, the control force u, and dis-
turbance d. This equation includes motor actuator dy-
narmics, and « is an input voltage. Friction is described
by linear viscous friction and nonlinear term as

Ufrz'c(-ra 5'3) = Bi+ ﬁfric(msi'): (30)

where B is viscous damping coefficient and @4 15 non-
linear friction force term as a functicu of position and
velocity, Table I shows the estimated parameter value
of mmertia and damping coefficients of twin-servo motor
system.

Firstly, we design optimal RIC in the #. framework,
Reference model is selected to minimize the difference
between the dynamics of two liner motors as

1

Pm(S) = '0—5—55

(31)
The design goal is to find a feedback controller K of in-
ternal loop compensator that has a control loop band-
width 100 rad/s.

A mixed sensitivity problem is forinulated as follows

< 1. (32)

[e o]

min
K

[ Wi (1l + P K)™?

WaPnK(1+ k)™t

and the problem of imaginary model p:oles can be solved
via axis shifting technique. But there are still two
model zeros at infinity, which are also on the imaginary
axis. This can be treated via a Wy weighting selection:

52

vt (33)

Z

Inverse of Wy is the desired shape of the sensitivity
function. W, is selected as

Blas® + 20 wev/as + w?)
(Bs? + 2(awe/Bs + w?)

where 8 = 250 is DC gain which controls the distur-
bance rejection, o = 0.5 is high freguency gain which
controls the response peak overshoot, w. = 200 is cross-
over frequency, and {; = {» = 0.8 is damping ratios of
the corner frequencies. The structure has implicit ¢
filter parameters of disturbance observer, so we can de-
sign the parameters using the desired criterion in the
frequency domain.

From Eq.(31)-(34), we obtain optimal controller K
using MATLAB[13]:

W, = (34)

_ 3108822 + 978.35z - 30109

K(=) =" 3 5iss00s ~0e0ar )

10
Froquency (md’s)

Fig. 7. Sensitivity Function, Complementary Sensitivity Func-
tion, and Weighting Functions

] 005 o1 .15 [}
Time 3)

Fig. 8. External Disturbance applied to the Twin-Servo System

This controller is discretized by using the bilinear trans-
formation and reduced to 2nd order through optimal
Hankel minimum degree approximation. The resulting
sensitivity function, complementary sensitivity func-
tion, and weighting functions are shown in Fig. 7.

For the trajectory tracking problems, conventional
PID controller is used to stabilize whole system and
track the desired position accurately. The fifth order
polynomial function is used to specify the position, ve-
locity, and acceleration at the beginning and end of
path. The target position is 30mm. Control sampling
frequency is 1000Hz and all controllers are discretized
by using the bilinear transformation.

We intentionally apply external disturbance whose
shape is shown in Fig. & with two sinusoidal plus con-
stant input. This disturbance was applied to only one
of two linear motors to examine robustness of the RIC.
Fig. 9 shows the results with disturbance of Fig. 8. As
can be seen here, the tracking error shows good per-
formance within +40um and the trajectory shows the
robustness of the proposed controller.

V. CONCLUSIONS

We proposed a robust motion control scheme which
consists of internal loop compensator and external loop
controller. Internal loop compensator can be designed
by many methods due to the generality of the controller
structure and H., mixed sensitivity algorithm was used
to optimize compensator gain in this paper. It makes
the system stable under uncertainties and nonlineari-
ties. External loop controller can also be arbitrarily de-
signed to meet the specification of the system using the
neat result of internal loop compensator. The effective-
ness of the proposed algorithm is verified through tra-
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Fig. 9. Experimental Results with Disturbance

jectory tracking control algorithms and the results show
excellent performance under various nonlinear friction
characteristics and disturbances for twin-servo brush-
less DC linear motor system.
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APPENDIX

I. PrROOF OF THEOREM 1
The transition matrix ®(t) of (15) is defined as

B(t) = exp{Et) {36)
and suppose
[l ()] = mexp{—at) t>0 {37}
for some constants m > 0, & > 0.
From (13}, we get
¢
ern(t) = B(t)ems +f @t — r)wdr. (38
0

Performing the operator ||| to both sides, we get

llem (2)l| < H‘i’(t)liﬂemoll+ftliq’(tuT)HHw(T))HdT- (39}
o
From (14), {37), and {39}, we can get
llem ()l explat) < milemolt + T2 (exp(at) - 1)
¢ (40)
+ [ s exptar) lem(ril dr.
By the Gronwall-Bellman lemma, we get

lem (£)}l exp(at) < mfjemoll + Z2 (exp(et) — 1)

+ fot [ml]emoﬂ + m_;?z_ {explar) — 1)] Mm%y exp (f: mry ds) dr

(41)
where
[} [abenoll+ 2 xptar) - )] - e o a5} i
= mllemoll -4+ exp )] [ L ocp o,
—exp (mmt}} + mLm {1 exp (mmt)} }
From {41), we get
lem (@)l < mllemoll exp ({mm — a)t) + —= [1 = exp((mn; ~ a}t)]
%ﬁﬁ 11~ exp ((ms — a)t)]
= T mienoll - 2 e (G — )
< | |+ [mtemoll + | 22| xp nm: - ey

(42)

Therefore, for given T, (42) becomes

mm m
|22+ [mlemoll+ | 22| T xp Grm — ) <
o — mn o —
(43)
Since m||lemo|| + HE%H is bounded, and if we select
@ > min, {44)

then the second term in {43) becomes zero as T — oo, and we

can find a such that HQ—T—EE" < ¢. If we choose o such that

lledl = L ljmnz|] — [jmm ||, we can get (43) for given T < co. W
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