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Abstract — A behavior-based control and learning architecture
is proposed, where reinforcement learning is applied to learn
proper associations between stimulus and resp by using
two types of memory called as short Term Memory and Long
Term Memory.

In particular, to cope with delayed-reward problem, a
knowledge-propagation (KP) method is proposed, where weli-
designed or well-trained S-R(stimulus-response) associations
for low-level sensors are utilized to learn new S-R associations
for high-evel sensors, in case that those S-R associations
require same objective such as obstacle avoidance. To show the
validity of our proposed KP method, comparative experiments
are performed for the cases that (i) enly a2 delayed reward is
used, (ii) some of S-R pairs are preprogrammed, (jiii) immediate
reward is possible, and (iv) our KP method is applied

I INTRODUCTION

For implementation of autonomous and intelligent
system, a lot of research works have been done in many
areas including cognition, reasoning, and learning. When
compared with level of human intelligence, behaviors of
low-level animals could not be considered as intelligent one.
But, recently, it has been understood that those behaviors
should be counted as sufficiently intelligent when
considering the environment of the low-level animals. Some
robot control systems involving behavior-based architectures
of such low-level animals have been proposed [1]-[4].

A distinct feature of behavior-based control architecture
can be described as follows: an action is selected without use

- of cognitive models, reasoning, and planning, among
possible actions of a robot associated with a stimulus (or
state) when an environmental state is given to a robot. Here,
there are two representative behavior-based control
architectures; Subsumption [4] and Schema [3].

In the Subsumption architecture, an action with higher
priority can always subsume other possible actions
associated with the state. And in schema-based architectures,
all actions associated with the state would be combined. In
those architectures, if associations between set of behaviors
and set of stimulus are fixed, then the robot shows same
behaviors under same environment, But, for the adaptation
on uncertain and dynamic environment, it is necessary to
change associations; strengthening or weakening current
connections between sensor state and actions, and linking a
new sensor state with proper actions (or behaviors). For such
a purpose, reinforcement leaming techniques have been
employed [5)-[8].

When designing an intelligent robot by using a behavior-
based control architecture involving reinforcement learning,
several factors should be taken into account. For example,
all necessary state-action pairs (or stimulus-response
behaviors), and their relations should be defined and
designed, where relations could be setup in a hierarchical or
a parallel fashion [2].

On the other hand, it usually takes a long time to learn
some necessary associations between stimuli and behaviors
by reinforcement learning technique [11][12]. There are two
types of rewards; immediate reward and delayed reward.

Delayed rewards have to be used to evaluate the
suitability of past course of action of the robot. While this
process is theoretically possible, it tends to be unacceptably
inefficient: feedback information is often too rare and
episodic for an effective learning process to take place in
realistic robotic applications. A way to bypass this problem
is to use a trainer to continuously monitor the behavior of a
robot and provide immediate reinforcements. To produce an
immediate reinforcement, the trainer must be able to judge
how well each single robot action fits into the desired
behavior pattern.

In this paper, a behavior-based control and learning
architecture is proposed, where a behavior is selected among
behaviors associated with a given sensor state by
considering internal desires, and also reinforcement learning
is applied to learn proper associations between sensor states
and behaviors. In our design, two types of memory are
employed for the learning. One is short term memory (STM)
in which stimulus-response (SR) pairs are recorded along the
time. The other is long term memory (LTM) to which
stimulus-response pairs are moved from STM together with
their reliability, when a reward is received. And in
particular, to solve delayed-reward problem, a knowledge-
propagation {KP) method is suggested, where well-designed
or well-trained S-R associations for low-level sensors such
as ultra sonic sensors are utilized to learn new S-R
associations for high-level sensors such as CCD camera, in
case that those S-R associations could require same
objective such as obstacle avoidance.

To show the validity of our proposed KP method,
comparative experiments are performed for the cases that (i)
only a delayed reward is used, (if) some of S-R pairs are
preprogrammed, (iii) immediate reward is possible, and (iv)
our KP method is applied. From such experiments, we will
show that KP method could be more effective in learning S-
R behaviors in delayed reword environment than other
methods.
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II. A Behavior-based Control and Learning Architecture
A. General Architecture

Block diagram of our proposed behavior-based control
and learning architecture is represented as in Fig. 1 In our
architecture, there are 5 modules; Sensor Module,
Perception Module, Memory Module, Motor Module, and
Behavior Selection Module. Sensor Module is composed of
physical sensor and logical sensor. Physical sensor is
attached into the robot, and transforms physical quantity into
electrical signals. And, logical sensor can be considered as
processing part of the physical sensor signals to detect
stimulus from the environment. Explicit use of the logical
sensor can enhance the openness of our behavior-based
architecture in the sense that any physical sensors can be
easily attached into our software system thru our logical
sensors by simply defining necessary information into pre-
specified DB protocols. Perception Module (PM) plays a
role of transferring output of logical sensors to the behavior
modules, where each logical sensor information is properly
weighted by stimulus recognition filters. Memory module
consists of short-term memory (STM) and long-term
memory (L.TM),

STM is used to record stimulus-response pair at every
tick (sampling time) until a new reward or reinforcement is
enforced. Then, the stored information is transferred to LTM
with reliability index, where S-R pairs are analyzed to learn
current association between stimulus and response.

Fig. | Behavior-based control architecture.

Motor module plays a role of controlling actuators to
perform selected behaviors. Behavior Selection Module
includes releaser which activates behaviors, behavior
network which explains relations among behaviors, and
associations between releasers and behaviors. Output of PM
is transferred to all releasers, and every releaser computes
how much current stimulus coming from PM is related or
associated with its own behavior, where one releaser
handling one stimulus is connected with one behavior to
form an S-R behavior [2]. Behavior value is then determined
by using only releaser output, or by using releaser output as
well as internal state values [5]-[8]. Behavior selection is
done in such a way that maximum behavior value is chosen
[14], or some behaviors [15], where values are greater than a
pre-specified threshold value, are competed by means of a

competition network. Maximum value method lets the
system perform the action right after action selection. But,
competition method requires competition among behaviors
with values above a threshold, which relatively cause
complexity problem [16]. On the other hand, priority-based
behavior selection can be also applied. All such behavior
selection techniques do not employ cognitive reasoning
and/or planning to select a behavior responding to incoming
stimulus. In this sense, we call such techniqt’;es as behavior-
based technique.

In our work, a competition-based action-selection is
utilized. And, to learn appropriate association between
stimulus and its possible responding behaviors,
reinforcement learning wiil be applied. Specifically, our
architecture is designed such that new S-R behaviors can be
inserted into the behavior network whenever strength of
association between a new stimulus and some behavior gets
higher than a threshold.

B. Memory for Learning

Behavior exploration is executed to find a proper
behavior for a new stimulus (or environmental state), and to
learn optimal behavior which is better than current behavior.

To find a proper behavior for a new stimulus, an arbitrary
behavior is performed. And rewards may be received or not.
Such an arbitrary behavior to respond to a new stimulus is
recorded in STM along the time regardless of reward signal.
If a reward is received, then past history of S-R behaviors
are transferred from STM to LTM. In this process, if some
S-R behaviors are already registered in LTM, reliability of
those S-R behaviors are updated by
(1)

1=V,
Ve =Fa +7’7¢

4
*

where

7 : learning rate,

Vlj : reliability of between stimulus and behavior at time ¢,
d : time difference on 3T memory,

i : index of stimulus,

J + index of behavior,

k : index of ST memory.

And, new S-R behaviors whose reliability value is above
a threshold are registered in the behavior network.
Exploration for optimal behavior can be performed by &-
greedy policy [17] or by skili learning [18] which generates
a new behavior by changing motor command parameters.
Here, e-greedy policy is employed.

In Figs. 2 and 3, operational procedure and its pseudo
codes of STM and LTM are summarized.

It is remarked that our learning as explained above can be
considered as an associative learning between stimulus and
behaviors using STM and LTM. There are two types of
associative learning; one is classical conditioning and the
other is operant conditioning. Classical conditioning is an
association forming process by which a stimulus that
previously did not elicit a response comes to elicit a
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response. Operant conditioning is a process through which
the consequences of a response increase or decrease the
likelihood that the response will occur again. In our case,
operant conditioning is employed for learning.

@ m— M M
“{drcular queue) ) J— (linked-list)
time-tick / pushSTMg) i -
j|_Record,. \L | SRrecord,
- _ f Record,.2 rewand,'updateLTMg SRrecord,
N H
| delete() J /| srrecord;
Behavior threshold / addBN(}
Network |

Fig. 2 STM and LTM operations.

@ if received<timetick> then
Begin thread
if{ query(stimulus,behavior) } // to PM and BSM
{

makeRecord()
pushToSTM( data );

/# stimulus and behavior data

}
End thread

@ ifreceived<reward> then
Begin thread
do

popFromSTM() / pop the data from STM

iff find( stimulus, behavior} ) // in LTM
updateReliability() // update reliability in LTM using Eq. (1)

else

{
insertData()
updateReliability()

H

bwhile( iSEmptySTM() )
End thread

Fig. 3 Pseudo codes for STM and LTM operations.

// insert data to LTM

I1I. Knowledge Propagation
A. Behavior Learning by Delayed Reward

In general, it is difficult for the robot to get rewards or
reinforcement immediately just after a behavior in applying
reinforcement learming technique. This is due to a difficulty
that a robot cannot evaluate how well its behavior is fitted
for the geal or for the satisfaction of its own motivation.
Such as evaluation may be possible, if a trainer is available.
In this case, the trainer should watch out the robot until it
completes necessary reinforcement learning which might
require a long time operation. Thus, it is practically difficult
to apply. After all, delayed-rewards have to be received.
Delayed reward greatly slow down the leaming process,
because reward signal is often too rare and episodic for an
effective learning process to take place in realistic
applications. Several techniques can be considered to bypass
such a delayed reward problem [19].

First, robot is driven to completely learn necessary S-R
behaviors. In this case, it cannot be known when leamning is
completed. In fact, a complete learning may not be
guaranteed due to insufficient number of episodes.

Second, reinforcement program (RP) can be constructed
to replace a human trainer. This artificial trainer could

provide the robot with immediate reward, and thus robot can
be effectively trained by reinforcement learning. However, it
is not clear how we can construct such a reinforcement
program, since we should know all possible stimuli coming
from robot sensors, and should understand what to do for
those stimuli. Unfortunately, such a perfect understanding
may be unrealistic. If wrong RP is applied, incorrect S-R
behaviors may be generated, which we would like to avoid
in the design of robot actions.

Third, direct programming (DP) can be applied, if we
exactly know what behavior should be matched with a given
stimulus. DP can reduce the number of S-R behaviors to be
learned. But, all S-R behaviors cannot be directly
preprogrammed, since there could be a lot of unexpected
stimuli to the robot. Thus, even in DP case, learning is still
required as in other cases. It is expected that DP can enhance
speed of reinforcement learning owing to reduction of
number of S-R pairs to be learned.

In this work, to partially cope with delayed-reward
problem of reinforcement learning, a novel type of
knowledge propagation (KP) is proposed. To be specific,
suppose that a robot is perfectly trained to respond to a
stimulus from a low level of robot sensor, which let the
robot achieve an internal desire or motivation. Also suppose
that a robot gets a new stimulus from a different or high
level of robot sensors, and robot should respond to the new
stimuli to achieve the same type of internal desire or
motivation of existing S-R behaviors made by the low level
of robot sensors. Then, new S-R behavior made by the high
level sensor can be expected to be learned by using the
existing S-R behaviors made by low-level sensor.

For example, suppose that obstacle avoidance behavior
by sonar sensors (low-level sensors) ' be innately
programmed or pre-learned in a mobile robot. Then if a new
vision sensor (high-level sensor) is mounted to the mobile
robot, an obstacle can be detected as a new stimulus from
the vision sensor, while the robot could avoid the obstacle
by the obstacle avoidance behavior learned by sonar sensors.
For this case, a new obstacle-avoidance behavior can be
effectively learned to respond to the obstacle stimulus
coming from the vision sensor by employing such an
existing obstacle-avoidance behavior of the robot, We will
call this type of learning as knowledge propagation (KP).
Fig. 4 shows the conceptual diagram of our proposed KP
module.

Knowledge Propagation
Sensor Module Obstade(Logic.) KPM
G [l s
4
> Envil:'onment
lected Behavior

Fig. 4 Knowledge Propagation Module.
B. Knowledge Propagation Algorithm

As shown in Fig. 4, two types of memories, RSTM and
RLTM, are included in the module. Recall that in STM,
every selected behavior and its associated stimulus is
recorded at every time tick. But, in RSTM, a stimulus-

4144



response for a sensor (e.g., sonar sensor) is recorded, only if
the stimulus for the sensor is considered to be associated
with other stimulus from a different sensor (e.g., vision
sensor). When a reward is given, history of S-R behaviors
for the sensor (usually, relatively low-level sensor) is
transformed to RLTM together with reliability index
computed by the similar equation of Eq. (1). Detailed
memory operation for RSTM and RLTM is omitted since it
is similar with that for STM and LTM in Sec2.

Knowledge propagation
process

time t t; t e LY tia LIEIN
. | | | | i | |
sensorinput g, 5, s, S, 5, s,
behavior e B BB B. B Bn
[

-----
————

Fig. 5 Knowledge Propagation Process.

To be mere specific, consider the timing chart in Fig. 5,
when at time tl, a new stimulus S1 (obstacle) from high-
level sensor like CCD camera is applied to the robot. And at
time t2, t3, and t4, the robot receives stimulus 80_a, S0_b,
and S0_c, respectively, from a low-level sensor like sonar
sensor, and thus executes innately preprogrammed
avoidance behaviors Bl, B2, and B3, respectively, If
objectives of S1-R and SO-R behavior are known as the
same, then KP process begins to analyze B, B2, and B3 to
make a new behavior B for the stimulus S1. Here, B is made
by vector sum of B1, B2, and B3, for the robot to rapidly
avoid obstacle when receiving the stimulus S1. After all, a
new S1-B pair is made by the knowledge propagated from
S0_a-B1, 30_b-B2, and SO_c-B3 pairs, and is then available
to the robot. This process is done in reasoningKPM() of the
pseudo code in Fig. 6.

sensorModuleUpdate()
perceptionModuleUpdate()
reactiveMatch()
selectBehavior()

if( existK PMPercept() )
saveKPMMemory( KPMPercept, currBehvaior )

if{ receivedReward(})
{
reasoningKPM() /1 start reasoning
updateKPMMemory() // update reliability in RLTM
}

Fig. 6 Pseude Code of Knowledge Propagation.

It is remarked that KP method would be better than DP
and KP methods owing to the use of RSTM. To be specific,
recall that each logical sensor is connected with an RSTM.
Then, we can understand that when delayed reward is
received, KP process gets to know what behaviors should be
rewarded by searching for RSTM or by analyzing RSTM.
This process can be considered as replacing delayed reward
with immediate reward. Thus, KP can show enhanced
learning speed. And also, a behavior is chosen generated by
referring to those rewarded behaviors, which reduces

exploration trials, But, RP and DP methods have to explore
behaviors until a robot receives a positive reward for the
behavior on each stimulus.

IV. EXPERIMENTS
A. AmigoBot System

AmigoBot of ActivMedia Robotics Company [22] is
employed for our experiments as shown in Fig. 7. The robot
has 8 sonar sensors and one CCD camera. Pentium
PC(233MHz) is used to control the robot, where 900 MHz
RF modem is utilized to communicate with robot, and 2.2
GHz A/V receiver is used to get the video data of CCD
cameta,

Host PC : Pantum 233MHz PC
Communi H

iction ©
- Serial ; 300MHZ RF Modem
- Visiot © 2. 2GHz AV system

Fig. 7 Control Systetn and Robot,

B. Learning Experiments

To show the validity of our proposed architecture and KP
algorithm, experimental set-up is organized as in Fig. §,
where successful robot task is defined as running along the
circular track without violation of traffic signal and without
collision to the walls as well as an obstacle.

600cm

500cm

Sua Line

B Obsade

Fig. 8 Environment.

When a run is considered successful, the robot will get a
reward. Here, it is assumed that physical properties of the
track such as, length and width should not be changed
during whole experiments. But a traffic signal in the track
will be arbitrarily changed from red to green or from green
to red, and an obstacle is given at any place in the track.

Fig. 9 Sensor Module
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Fig. 11 Percepts and Behaviors

TABLE1
Innate Knowledge
Stimulus Behavior
Corner LeftTurn90
Left Wall LeftWallAvoid
Right Wall RightWallAvoid
Collision Back
TABLE II
Experiment Results in case Robot has only innate
knowledge
Simulation Experiment
Success 5 2
_Episodes 250 100

Sensor Module of the architecture in Fig. 1 is designed as
in Fig. 9. And 9 different stimuli for obstacle detection are
employed as in Fig. 10, and percepts and behaviors are
designed as in Fig. 11. Initial stimulus-response pairs are
given in TABLE T as innate knowledge. TABLE Il shows
how the robot could behave in the track only with innate
knowledge in TABLE I. As shown in TABLE II, only 2% of
100 real episodic robot runs could be counted successful.
This implies that no further learning is possible by means of
reinforcement learning due to shortage of number of
successful episodes which cause delayed-reward problem.

Stimalvz | Benaviors
Red Stan
Signal Lamp Yalow S
fue Golorwardd

Golorwardd
Gororwardd
Goforwarod

Pos.L Visien_L
Pos_L Vision.
Pus_L VisionR
Pot.M ¥isign_L
Pus_M ¥ ision_M
Fus_M Vision_RA
| _Pos_R visweni
Pos.R Vision_ i
Poe B Vision i

Obstacls Left Tumn 15

Golorwatad

i

Fig. 12 8-R editor tool for DP method.

Now, to show the effectiveness of KP method, same
experiment as above is performed for the DP, RP, and KP
methods. In the DP, correct responses to the traffic signal,
and correct behaviors to same obstacle-stimuli are directly
programmed by using our developed S-R editor tool as
shown in Fig. 12. Here, remaining 3 S-R behaviors are to be
learned by reinforcement learning technique. For the RP, a
computer program is written and a human trainer is
employed to give proper rewards to the responses for the
traffic signals and an obstacle. And finally, for the KP, S-R
behaviors for the sonar sensors and position logical sensors
are designed. Fig. 13 shows an exemplar design of such S-R
behaviors.

Left Turn 45

Fig. 13 An Example of 5-R Behaviors for sonar sensor and logical position
Sensor.

TABLEIII
Reliability of LTM
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50 episodic trials are performed for each method. TABLE
III shows the reliability index values for S-R behaviors of
each method. Here, we omitted S-R behaviors for traffic
signals and other stimuli. Reliability index values show how
much a stimulus is strongly connected to a behavior, It is
here observed from TABLE III that RP showed 5 behaviors
such as goforwardl, goforward2, goforward3, goforward4,
and goforward5 for the case of M-R. M-R is the case from
Fig. 10 that robot is in the middle and obstacle is in the right.
On the other hand, for M-R, KP method showed an
appropriate behavior, goforward3, with the reliability value
higher than RP. It can be also observed from TABLE III that
reliability values of S-R behaviors of M-M, R-L, R-M, and
R-R cases for KP method are higher than those for DP and
RP methods. This implies that for the same episedic trial
numbers, KP method enable the robot to learn necessary S-R
behaviors more reliable than other two methods in delayed
reward environment,

It is remarked that fast learning and high reliability of KP
method would come from the use of RSTM which is
connected with a logical sensor. Specifically, when a
delayed reward is received, KP process can immediately
know what behaviors should be rewarded by searching for
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RSTM or by analyzing RSTM. That is, KP process can be
considered as replacing delayed reward with immediate
reward. Thus, KP can show an enhanced learning speed.
But, RP and DP methods have to explore behaviors until a
Tobot receives a positive reward for the behavior on each
stimulus. Thus, for RP and DP metheds, it may take a
relatively long time to learn correct S-R behaviors.

V. CONCLUSIONS

In this paper, a behavior-based control and learning
architecture was proposed, where reinforcement learning
was applied to learn proper associations between sensor
states and behaviors. To solve delayed-reward problem, a
knowledge-propagation (KP) method was proposed. And to
show the validity of our proposed KP method, comparative
experiments were performed for the cases that (i) only a
delayed reward was used, (i) some of S-R pairs were
preprogrammed, (ili) immediate reward was possible, and
(iv) our KP method was applied. From the experiments, we
showed that KP method enabled the robot to learn necessary
S-R behaviors faster and more reliable than RP and DP
methods.
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