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On Stabilization by Local State Feedback for
Discrete-Time Large-Scale Systems with
Delays in Interconnections

IL HONG SUH anp ZEUNGNAM BIEN

Abstract —By employing an extended Nyquist array technique, a suffi-
cient condition is obtained for decentralized stabilization of a class of
discrete-time large-scale systems with delays in interconnections.

I. INTRODUCTION

Centralized control techniques have been known to be inefficient or
even unsuccessful in some cases if applied for the control of large-scale
dynamic systems [1]. To overcome the difficulties of centralized control
methods. many researchers have proposed as alternatives various de-
centralized control methods involving simplification of model descrip-
tions, effective procedures of testing the stability and/or hierachical
optimization [1]. However, most of the decentralized control techniques
developed so far are derived to handle the continuous-time systems {2],
[3]. In particular, the assertion (2], [3] that there always exist local state
feedback controllers stabilizing the large-scale systems in which delayed
and /or nondelayed interactions occur only through the input of each
controllable subsystem is true for the continuous dynamic systems, but
may not directly apply for the discrete-time systems.

In this note it is shown that if. in addition to the controllability
assumption on each subsystem as in the continuous-time case, certain
restrictions are imposed on the interaction signal. then discrete-time
large-scale systems can be stabilized by decentralized state feedback
controllers. For this, an extended Nyquist array technigue in [6] is
employed.

It is noted that Chan and Desoer [3] utilized the Nyquist array
technique by Rosenbrock [4] for the synthesis of decentralized stabilizing
controller of the continuous-time large-scale systems. Thus, the result
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developed here may be viewed as an extension of Chan and Desoer’s work
[3] to the discrete time case.

Throughout the note, € will denote the unit circle of the complex plane.
R" denotes n-dimensional Euclidean vector space. For a given square
matrix 4. A" and det 4 will denote the inverse and the determinant of A,
respectively. For a given » X m matrix B with entries b;; (that is, B=
15;),=u. j=m) | Bi . will denote the norm defined [7] as

1Bl ,= max

I<i<n

BiIB!: 2 ibl}
JF=1

II. SYNTHESIS OF DECENTRALIZED STABILIZING CONTROLLER

Consider the large-scale system with N subsystem S;, i =1,2,---, N, as
shown in Fig. I, where the dynamics of S; are given by

S xi(k+1)y=Ax;,(k)+ bv, (k). i=1,2,---,N. (1)
Here x,(k)& R™ is the state vector, v;(¢) is scaler input to the ith
subsystem, and A4; and b, are the n, X n; and »n; X1 constant matrices,
respectively. Let each subsystem S, be interconnected to other systems by

the following relation:

.
v (k) =u(k)+ 2 E,x;(k—h,). i=12.
f=1
j’#l

- N.

2

Here u,(k) is the scaler control input to the ith subsystem S, &;;=0 is
the delay-time in interconnections. and E, ; is the 1X #; constant matrix of
the form

&)

=] 0 Al n—1
Elj_[e €;;n e} ]

ij €ij if
Then from (1) and (2), the composite system can be represented as

N
Six,(k+1) = A4,x,(k)+ b (k)+ X bEjx,(k—h,;),
=1
‘}#1
i=12,---.N. (4

For the continuous version of (4). it was shown in [2], [3] that under the
assumption that each subsystem is controllable. there exist local decentral-
ized state feedback controllers which stabilize the continuous-time large-
scale systems. However. in the case of the discrete-time large-scale system
in (4). local stabilizing state feedback controllers may fail to exist under
the local controllability assumption only as in the continuous-time case.
This fact is easily shown by a simple example in the following.

Example I: In(4),1et N=2,n,=n,=1,4,= 4,=0, E;, = E;, =107,
and k> = h,, = 0. Let the local controller be u,(k) = — a,x,(k). for each
i =1,2. Then the characteristic equation of the closed-loop system is given
by

d(z)=(z+a,)(z+a;)—10% )

It easi1~y follows from (5) that both of the zeros of d(z) lie in the unit
circle C of the = plane only if

lag+ay| <2, and |eja,—10% <l (6)

However, there do not exist real numbers «, and a, satisfying (6), and

hence the system cannot be stabilized by the local state feedback controls.

It will be shown that the discrete-time large-scale systems in (4) can be
stabilized by local state feedback controller of the form
i=12.---N

(k)= Fx,(k), M
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Ui (k) 4~ Vi (k)

+

x; (k}

—

Sy

+

E,']X](k-hh) * = EiNxN(k‘hiN)

Fig. 1. The block diagram of the ith subsystem.

where F, is a 1 X n, constant gain matrix given by

=[50 =g = ®)

if we impose, in addition to the assumption of local controllability, certain
restrictions on the interaction signal of the system in (4). Specifically, it is
assumed that the following conditions hold for the composite system in
4.

Assumption A.1: For each i =1,2,--- N, (4;, b;) is a controllable pair
and, without loss of generality, is given in the controllable canonical form,
ie.,

0 1 4] 0
. 0
A;= 0 b= &)
0 0 1 (])
¥ —dl ~ap!
Assumption A.2: For eachi=1,2,--- N, and each j=1,2,---, N, let
=1
gijé“biEij”oc: 2 ie,-’j|. (10)
k=0
Then there exist a set of positive scalers d;, i =1,2,- - -, N such that
N
dit Y dig <1, i=1,2.-.N. (1
=,
2!

It is remarked that Assumption A.1 is typical in the sense that this
assumption also appears in continuous-time cases, while Assumption A.2
is new and thus somewhat restrictive. Roughly speaking, Assumption A.2
may hold if all the norms of interconnection matrices b, E,; in (10) are
sufficiently small, which in turn implies that the interaction signals
N G=1. j»10;Epx;(k—h;,)) in (4) are weak. The main result is now
presented

Theorem 1: Let the composite system in (4) satisfy Assumptions A.l
and A.2. Then the decentralized controllers in (7) stabilize the composite
system in (4).

Proof: From (4) and (6), the charactenstlc equation d(z) of the
closed-loop system can be written as

d(z)=det(zI~T(z)) (12)
where
E R ENES) FETSN
is given by the block entries given by
. . |Ai+bF, i=
"’f(z)z{b,E,.,z R, ik . (13)

Since 7(z) in (13) is in a generalized companion form, it is obvious [5]
that there exists N X N polynomial matrix

P() =[P ]icra wiy=

such that
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d(z)=det P(z) (14)
where
n,—1
2+ 2 (a,"+j}k)zk, i=j
k=0 -
Pij(z): n=1 (15)
7hy Y ekt i)
k=0
Thus, it suffices to show the existence of f,-" for each i=1,2,---,N and

k=0,1,---,n; —1 such that all the zeros of det P(z) lie in the unit circle
of the z plane.

For this, suppose that for each z € C, there exists a positive scalar d;
such that

N

[Pe(2)> 2 )| i=12:-.N
<

J=

Pi{(2)l, (16)

Then R(z) defined by
R(z)=P(z)diag{1/2"}, (17

is a Hadamard matrix on € [6]. Also it follows from (17) that all the poles
of det R(z) lie in C of the z plane and each diagonal element of R(z) has
its poles in C of the z plane. Thus if all the zeros of P,(z) =0 lie in € of
the z plane for all i =1.2,- - -, N, then by the Nyquist array theorem in [6],
det P(z) has no zeros outside of € in the z plane. From this, our
remaining task is to show the existence of f,-" for each /1 =1,2,---,N and
k=0,1,---,n;—1 such that

i=1,2,+ N

N
Pi(z)> X d foralizeC, and
it
‘lisél

) 4 Pi(2

2) P,(z) has no zeros outside of C in the z plane.
To find such a set of gain parameters, let, for each j=1.2,---,N, F; be
chosen such that all the elgenvalues of ( A -+ b F}) are zero. Then for each
:€Candi=12.-

1P (2)] =1z =1 (13)
and thus from Assumption 2
N
[Pz =d,> 2 dj‘f;i (19
e
2
N a,—1
Ed(ENW%”I (20)
Jj=1
JF1
N n;—~1
>2ﬂ2ﬁﬂF (21)
=1 k
i?l
N
= 2 d)|Py(2)]. 22
=
j’-—#i

This completes the proof.

III. CONCLUDING REMARKS

A sufficient condition for decentralized stabilization of a class of
discrete-time large-scale systems with delays in interconnections was
obtained by employing an extended Nyquist array technique [6]. The
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result derived may apply if each subsystem is controllable and the
interactions between subsystems are small. It is noted that in the design of
computer-based local controliers for continuous-time large-scale systems,
the sampling time can be chosen to be sufficiently small to make the
resulting discrete-time systems always satisfy Assumption A.2. In the
vector Lyapunov function method in [8]. an assumption similar to As-
sumption A2 is used for the case when », is equal to unity for /=
1,2,-- - N. Tt is further remarked that in the proof of Theorem 1| the
interactions with delays are handled without any increase of the dimen-
sions of subsystems. while those delay terms are not easily dealt with by
other approaches [8], [9].

Finally, it is observed that there exists a set of numbers {d,. d5.- - . d y}
such that (11) holds if and only if all the leading principal minors of
I—[§,)i=\....x j=1.... ar¢ positive. which may be utilized 1o test
Assumption A.2.
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A Note on “Multilayer Control of
Large Markov Chains”

A. HAURIE

Abstract —1t is shown that the multilayer control scheme of the above
paper! can be constructed by using available results on Markov renewal
theory and semi-Markov decision processes.

I INTRODUCTION

In the above paper' Forestier and Varaiya have investigated a two-layer
feedback control structure for the control of a plant modeled as a Markov
chain with a large number of states. This paper was related to the
important literature in control theory dealing with large-scale systems
where different parts of the system under study operate at “different time
scales.”

The aim of this note is to show that a slightly different interpretation
could be given to a two-layer feedback control of a Markov chain. When a
Markov decision process possesses a very large state set S. it is possible to
associate with any proper subset B of S a semi-Markov decision process.
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defined on the sume time scale as the original process, and which constitutes
an aggregation of it.

A multilayer control scheme can thus be construcied by using many
available results on Markov renewal theorv and semi-Markov decision
processes. The proposition in the next section gives an alternate and quick
proof of the main results of Forestier and Varaiva.

II. THE MULTILAYER CONTROL SCHEME: A SEMI-MARKOV
DECISION PROCESS RESULTING FROM THE AGGREGATION OF A
MARKOV DECISION PROCESS

With the notations of the paper' controlled process is denoted s,.
r=0.1.--- with values in § £ {1.---.s). If 5, = i. the control u, can be
chosen in a prescribed set U(i). A stationary strategy is an element
u={(u(l),-- -.u(s))EUéU(l)X G(2)x -+ - X {s). For each u the pro-
cess s, is a Markov chain with stationary transition probability matrix
P(u) = {P,j(u)} where

P(u) =P (u()) = Prls,y = jls, =i u, = u(i)]. Q)

There is a cost k(i. u(i)) associated with the process being in state / and
the control being u(7). Under the strong ergodiciry assumprion { < for each
u the chain s, has a single ergodic class consisting of all the states > ). one
can associate with the stationary strategy u the long-term mean average
cost

7
J(u) = Th—[-nx ﬁﬁ' [;Ok(s,.u(s,)) . )

The determination of an optimal strategy » minimizing the cost (2) is a
classical problem fully treated in the operations research literature (see
[2]). Numerical algorithms permitting the computation of optimal strate-
gies for large-scale Markov chains have recently been proposed. although
many practical problems remain out of reach of these theories because of
the sheer size of the state set S and action sets L(i), i €S. In such
situations an aggregation technique must be used. The technique proposed
by Forestier and Varaiya is based on the following.

1) The restriction of the state S to a proper subset B= {1.2.---,}C S
called the set of boundary states;

2) the consideration, for each state 8 in B of a subset ¥%. of the set U
of possible strategies for s,.

Each time a boundary state § in B is reached. a particular strategy o is
picked in ¥# and the evolution of s, is governed by the transition
probability matrix P{¢#) until the next random time at which another
state 5 in B will be reached, etc.

Let us define the supervisor process b,, r = 0.1, --- with values in B as
follows. We assume that sy = by €E Band let 0 =T, <7, <<--- <T, be the
random times at which s, is in B. i.e,

To(w)=min{r>T(w);5(w)EB}. 3
Here w denotes the sample path. The supervisor process is
b(w) =sraf(w)  Tlw)<i<T,.(«). )

Notice that the definition of the supervisor process b, is given here in
the same time scale as the lower layer process s,. This differs slightlv from
the definition of the supervisor process given by Forestier and Varaiya.
We can state the following.

Lemma 1;: < Given a supervisor strategy ¢ =(c'.c?---.c"yev!
X -+ % VP the supervisor process b, defined by (3 and (4) is a semi-
Markov process with a strongly ergodic embedded Markov chain. >

Proof: Direct consequence of the strong ergodicity assumption on s,.

The supervisor process is. in fact. a particular case of a Markov renewal
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