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On  Stabilization by Local State Feedback  for 
Discrete-Time  Large-Scale  Systems with 
Delays in Interconnections 

IL HONG  SUH AND ZEUNGNAM BIEN 

developed here may be Liewed as  an extension of Chan  and Desoer’s work 
[3] to the  discrete  time case. 

Throughout  the  note. mill denote the  unit  circle of the complex  plane. 
R” denotes  n-dimensional  Euclidean  vector  space. For a given square 
matrix A .  .4 - ’  and det A will denote  the  inverse and the determinant of A ,  
respectively. For a given ~7 X nz matrix B with  entries b,, (that is, B = 
[h,,],=,,, ,=,,), II B .  x will denote the norm  defined [7] as 

11. SYNTHESIS OF DECENTRALIZED STABILIZING  COhTROLLER 

Consider  the  large-scale  system nith N subsystem Si. I = I ,  2,. . . I W ,  as 
sh0v.m in Fig. I .  where the  dynamics of S, are given by 

S , ; ~ ~ ( k + l ) = A , x , ( k ) + b , v , ( k ) ,  i=1,2:- . ,N. (1) 

Here x , ( k )  E R“, is the state vector, e , ( ? )  is scaler input to the i th 
subsystem. and A ,  and h, are  the n ,  X n ,  and R ,  X 1 constant matrices, 
respectively.  Let  each  subsystem S, be interconnected to  other systems  by 
the follodng relation: 

.?i 

c , ( k ) = u , ( k ) +  x E , , x , ( ~ - I I , , ) .  i = 1 . 2 : . . , ~ .  ( 2 )  
j = l  
1‘1 

Here u , ( k )  is the scaler  control input to the i th subsystem S, .  h, ,aO is 
the delay-time in interconnections. and E,, is the I X 17., constant matrix of 
the  form 

Ahsrruct --By employing an  extended Nyquist array technique, a suffi- E,, = [ eP, e! , . .  , e : / - ’ ] .  (3) 
cient  condition is obtained for decentralized  stabilization of a class of 
discrete-time largescale systems with delays in interconnections.  Then from ( I )  and (2). the composite system can be  represented as 

I. INTRODUCTION 
x 

S , : . ~ , ( / i ? l ) = A , x , ( k ) + b , u , ( k ) +  2 b,€ , , .x , (k-k , , ) ,  
Centralized  control  techniques  have  been knonrn to be  inefficient or 

even unsuccessful  in  some  cases if applied  for  the  control of large-scale 
dvnamic  systems [l], To overcome the difficulties of centralized  control i=1 ,2 ; . .  .!v. (4) 

J = l  
j # ,  

methods.  many  researchers  have  proposed as alternatives various de- 
centralized  control  methods invohing simplification of model  descrip- 
tions.  effective  procedures of testing  the  stability and/or  herachical 
optimization [I]. However. most of the decentralized  control  techniques 
developed so far  are  derived to handle  the  continuous-time  systems [2]. 
[3].  In  particular. the assertion [2]. [3] that  there al\va)-s exist local state 
feedback  controllers  stabilizing the large-scale  systems in whch delayed 
and/or nondelayed  interactions  occur  only  through the input of each 
controllable  subsystem  is  true  for the continuous  dynamic systems. but 
may not  directly  apply  for the discrete-time  systems. 

In  this  note  it is shown  that if. in  addition to the  controllability 
assumption on each  subsystem as in the  continuous-time case. certain 
restrictions  are  imposed on the interaction  signal.  then  discrete-time 
large-scale  systems can be  stabihzed by decentralized state feedback 
controllers. For ths. an extended  Nyquist  array  technique in [6] is 
employed. 

It is noted  that Chan and  Desoer [3] utilized the Nyquist  array 

. _  

For the continuous version of (4).  it was shown  in [2], [3] that  under the 
assumption  that  each  subsystem is controllable.  there exist local  decentral- 
ized state feedback  controllers whch stabilize  the  continuous-time  large- 
scale  systems. Hoxvever. in the case of the discrete-time  large-scale  system 
in (4). local  stabilizing  state  feedback  controllers may fail to exist  under 
the local  controllability  assumption  only as in the continuous-time  case. 
This  fact is easily  shown by a simple  example  in the foIlo-ing. 

E.xunlp/e I: In (4). let X = 2. 11’ = n 2  = 1. A ,  = A ,  = 0. E,? = E,, = lo2,  
and h I 2  = h,, = 0. Let the  local  controller be u,( k )  = - u , x , ( k ) .  for  each 
r = I .  2. Then  the  characteristic  equation of the closed-loop system is given 
by 

d ( - )  = ( z  + a l ) ( z  .,)- 1 0 4 .  ( 5 )  

It  easily follows from ( 5 )  that both of the zeros of d( 2 ) lie in the  unit 
circle P of the z plane  only if 

technique by Rosenbrock [4] for the synthesis of decentralized  stabilizing ‘ a l - a 2 J < 2 ,  and l a , ~ ~ - I O ~ l < l .  
controller of the  continuous-time  large-scale  systems.  Thus.  the  result 

(6) 

However. there do not exist real  numbers aI  and a2 satisfying  (6), and 
~ ~ ~ ~ ~ n p t  recetbed lune 3. 1981: reviwd June 17. 1981. December 1 1 .  I9Pl.  and hence the system cannot be stabilized by the  local state feedback  controls. 
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SLxncs  and  Technology. Seoul 13 I .  Korea stabilized by local  state  feedback  controller of the form 

I ~ , , ~ .  tows Cip .  IA 57241. on leave from the  Korea  Advanced  Institute o f  kience and 
z. Blen ih u x h  the  Department of Electrical and  Computer EngmR-ring. Unlverblt? of 

Technology. Seoul I3 I .  Korea. u , ( X ) = < , x , ( k ) ,  i=l,2:“..1: (7)  

I H Suh is ,,i1h the hpa r tmen t  of FJ~trical Engineering,  Korea  Advanced Inhrltute of It be shown that the discrete-time in (4) Can be 
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where 6 is a 1 X n ,  constant gain  matrix given by 

if we impose. in  addition  to  the assumption of local  controllability,  certain 
restrictions on the  interaction  signal of the  system in (4). Specifically,  it is 
assumed  that the following  conditions  hold  for  the  composite  system  in 
(4)- 

Assumption A .  I :  For each i = 1.2; . . , N ,  ( A i ,  b,) is a controllable pair 
and, without loss of generality,  is given in the controllable  canonical  form, 
1.e.. 

Assumption A,.?: For each i = 1,2. . . , N, and each j = I ,  2,.  . . , N, let 

11, - I 

[,Je l!biEijllx= 2 ie$l. ( 10) 
k = O  

Then there  exist a set of positive  scalers di. i = I ,  2,. . ', N such  that 

M 
d; '  2 dl [ l ,< l~  i=1,2:..,iV. ( 1 1 )  

j = I  
J Z I  

It is remarked  that  Assumption A.l is typical  in the sense  that this 
assumption also appears in continuous-time  cases, while Assumption A.2 
is new  and  thus  somewhat  restrictive.  Roughly  speaking.  Assumption A.2 
may  hold if all  the norms of interconnection  matrices b,E,, in ( IO)  are 
sufficiently  small. which in turn implies  that  the  interaction  signals 
(ET= I. + Ib, ~ , ~ x , ( k  - h, , ) )  in (4) are weak. The  main  result  is now 
presented. 

Theorem I :  Let  the  composite  system  in (4) satisfy  Assumptions A.1 
and A.2. Then  the  decentralized  controllers in (7)  stabilize  the  composite 
system in (4). 

Proof: From (4) and (6) .  the  characteristic  equation d ( z )  of the 
closed-loop  system  can  be  written as 

d(  z )  = det { z l -  T( z)) (12) 

where 

is given by the block entries given by 

f l J ( Z )  
A , + b , < ,  i =  j ,  

b,E,Jz-h' j ,  i #  j .  

where 

d(  z )  = det P( z) 

745 

( 14) 

Thus,  it  suffices to  show  the  existence of Jk for  each i = 1,2; . .. N and 
k = 0, I: . ., n ,  - 1 such  that all the zeros of det P ( z )  lie in  the unit  circle 
of the z plane. 

For this.  suppose that for each z EC, there  exists a positive  scalar d, 
such that 

N 
d z l ~ i i ( z ) l >  x d l l ~ , ( z ) l ,  i = 1 . 2 : . . . ~ .  (16)  

j = l  
J i l  

Then R( z )  defined  by 

R ( z ) ~ P ( z ) d i a g ( l / z " , ) ,  i=1,2;-. , .hr (17) 

is a  Hadamard matrix on 5: [6] .  Also it follows from (17) that all the poles 
of det R( z )  lie in c of the t plane  and each  diagonal  element of R( z )  has 
its  poles  in r? of the z plane. Thus if all  the  zeros of Pii( z)  = 0 lie  in c of 
the z plane  for all i = 1.2,' . . I N ,  then  by  the  Nyquist array theorem  in [6] .  
det P ( z )  has no zeros  outside of in the z plane. From this,  our 
remaining task is to show the existence off,' for  each i = I .  2,. . '. N and 
k = O , I : . . , n , - I  suchthat 

M 

1 )  d , l P , i ( z ) \ >  2 dJ iq , ( z ) i ,  f o r a l l z E e ,  and 
j = 1  
j # >  

2) P I , ( ; )  has no  zeros  outside of in  the z plane. 
To find such a set of gain  parameters, let. for each;= 1.2.. . . , A r ,  F, be 
chosen such that all the eigenvalues of ( A ,  -C b j c )  are  zero.  Then  for  each 
z E C a n d i = 1 . 2  ; . . . . X ,  

I P i i ( Z ) l  = IZ" ' I  = I  ( 18) 

and thus  from  Assumption 2 

Since T ( z )  in (13) is in a generalized  companion  form.  it is obvious [5] 
that there  exists N X N polynomial  matrix 

[ P , J ( ~ ) ] , = 1 . 2 . . . . , , ~ : ~ = 1 , 2  ;.., A' 

such  that 

This completes the proof. 

111. CONCLUDING REMARKS 

A sufficient  condition for decentralized  stabilization of a class of 
discrete-time  large-scale  systems with delays in interconnections was 
obtained by employing an extended  Nyquist array technique [6] .  The 
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result derived may  apply if each subsystem is controllable  and  the 
interactions between subsystems  are small. It is noted  that  in the design of 
computer-based local controllers  for  continuous-time large-scale systems. 
the  sampling time can  be chosen to  be sufficiently small to make  the 
resulting discrete-time systems always satisfy Assumption A.2. In the 
vector Lyapunov  function  method in [8], an  assumption similar to As- 
sumption A.2 is used for  the case when 1 7 ,  is equal  to  unity  for I = 
1.2: . . 3‘. It is  further remarked that  in the proof of Theorem I the 
interactions with delays  are  handled  without  any increase of the dimen- 
sions of subsystems. while those delay terms  are  not easily dealt  with  by 
other  approaches [8], [9]. 

Finally, it  is observed that  there exists a set of numbers ( d l .  d , .  . . ’. d, ) 
such  that (11) holds if and only if all the  leading  principal minors of 
I -[$,,I,= I , .  . .,,\- ,= ,, . ,v are positive. whch may be utilized to test 
Assumption A.2. 
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A Note on “Multilayer Control of 
Large  Markov Chains” 

A. HAURIE 

Abstract -It is shown  that  the  multilayer  control  scheme of the  above 
paper’ can be constructed by using available  resulrs on Markov  renewal 
theory and semi-Markov  decision  processes. 

I. ~TRODUCTION 

In the above paper’  Forestier  and Varaiya have investigated a two-layer 
feedback control  structure  for the control of a plant modeled as a Markov 
chain with a large number of states.  This  paper was related to  the 
important  literature in control  theory dealing tvith large-scale systems 
where different  parts of the system under  study  operate  at  “different time 
scales.” 

The  aim of t h s  note  is  to  show  that a slightly different  interpretation 
could  be given to a two-layer feedback control of a Markov  chain. When a 
Markov decision process possesses a very  large state set S .  it is possible to 
associate with any  proper  subset B of S a semi-Markov decision process. 

b> XSERC  Canada  under  Grant A9368 and  SSHRC  Canada  under  Grant  410-7R-M0?-R3 
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defuzed on the sunze time scale us the  originulprocess. and which constitutes 
an asregation of it. 

A multilayer control scheme can  thus  be  constructed by using many 
available results on Markov renexval theory and semi-Markov decision 
processes. The  proposition in the next section gives an  alternate  and quick 
proof of the main results of Forestier  and Varaiya. 

11. THE hfL-LTILAYER COh7ROL SCHEME: A SEMI-MARKOV 
DECISION PROCESS RESULTING FROM THE AGGREGWIOS OF A 

MARKOV DECISION PROCESS 

With the notations of the paper’  controlled process is denoted 5,. 

t = 0.1. . . . with values in S (I: . ‘ . 5 ) .  If 5 ,  = i. the control u, can  be 
chosen in a prescribed set L:( i). A stationan:  strategv is an  element 
u = ( u ( ~ )  ..... U ( S ) ) E C - L . ’ ( I ) X L : ( ~ ) X  . . .  X L ’ ( s ) .  For each u the  pro- 
cess sr is a Markov  chain with stationary  transition  probability  matrix 
P( u )  [P,,( u ) }  where 

There is a cost X ( r .  u( I ) )  associated Nith the process being  in  state i and 
the  control  being u( r). Under the s r r o q  ergodicrrl. arsunzpriorz ( << for  each 
11 the chain 5 ,  has a single ergodic class consisting of all the  states >> ). one 
can associate nith the stationary  strategy u the  long-term  mean average 
cost 

The  determination of an  optimal  strategy II minimizing the cost (2) is a 
classical problem fully treated in the operations research literature  (see 
[?I). Numerical  algorithms  permitting  the  computation of optimal  strate- 
gies for large-scale Markov  chains have recently been proposed. although 
many practical problems remain out of reach of these theories because of 
the sheer size of the  state set S and  action  sets L‘( i), i E S .  In such 
situations  an aggregation technique must be used. The technique proposed 
by Forestier  and Varaiya is based on the following. 

I )  The restriction of the  state S to a proper  subset B = (1.2.. . . .h) C S 
called the set of hou11dur3. s m e s ;  

2) the consideration, for each  state f i  in B of a subset V B .  of the set L‘ 
of possible strategies for s,. 

Each time a boundary  state /3 in B is reached. a particular strategy c p  is 
picked in V B  and the evolution of zr  is governed by  the  transition 
probability matrix P( rB) until  the next random time at  lvhch  another 
state 8’ in B will  be reached. etc. 

Let us define the supervisor process h,, r = 0.1. . . . nith values in B as 
folloLvs.  We assume  that so  = h, E B and  let 0 E To < TI < .  . . < Tz be  the 
random times at  tvhch 5,  is in B. Le.. 

Kotice  that the definition of the supervisor process h, is  given here  in 
the same time scale as  the lower layer process s,. This  differs slightly from 
the definition of the supervisor process given by Forestier and  Varaiya. 
We  can  state the follolving. 

Lenmu 1: <Given a supervisor strategy L‘ = (r’ .  r’:. ..c’) E V ’  
X . . X V h .  the supervisor process h, defined by ( 3 )  and (4 )  is a semi- 
Markov process with a strongly ergodic embedded  Markov  chain. >> 

Proqf: Direct consequence of the strong ergodicity assumption on sr .  
The supervisor process ib. in fact. a particular c a s  of a Markov renewal 
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