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Hierarchical optimal control of urban traffic networks
E. 8. PARKY, J. H. LIM{, I. H. SUHt and Z. BIENt

This paper deals with the problem of optimally controlling trafiic flows in urban
traffic networks, For this, a non-linear discrete-time model of an wurban traffio
network is first suggested in order to handle the phenomenon of treffic flows such as
oversaturatedness and undersaturatedness. Then an optimal control problem is
formulated and a hierarchical optimization technique is applied, which is based on a
prediction-type two-lavel method of Hirvonen and Hakkala.

1. Introduction

Bince Webster (1959) reported an efficient model of fixed-cyele traffic
signals on the oversaturated urban traffic networks, many researchers have
investigated the problem of effectively controlling traffic signals at traffie
stops, Their major concerns have been to establish well-defined models of road
traffic networks and their computational methods for eontrol. In particular,
Gazis (1964) applied the maximum principle to a road traffic problem. How-
ever, the high dimensionality of traffic networks causes serious computational
difficulties in obtaining an optimal control law, which led Burhardt and
Kulikowski {1970) and Tamura (1975) to apply decomposition and hierarchical
optimization techniques for an effective control algorithm. Recently, Sarachik
and Ozgiiner (1982) proposed a decentralized dynamic routing strategy for
clearing congested traffic networks with deterministic inputs.

Singh and Tamura (1974) first handled the control problem of an over-
saturated urban traffic network by suggesting a deterministic discrete-time
dynamic model and applying a hierarchieal computational method. In their
problem formulation, however, a certain inequality constraint was unrealisti-
cally incorporated, and as a consequence, an optimal control law for a given
problem may not be correctly obtained even though it exists, To remedy the
shortcomings of Singh and Tamura’s model, Lim et al, (1981) proposed a model
of an oversaturated urban traffic network by employing inequality constraints
which are slightly different from that of Singh and Tamura. .

In many real traffic situations, the phenomenon of oversaturatedness and
undersaturatedness must be handled concurrently in one framework, but the
models considered in either Singh and Tamura (1974) or Lim ef al. (1981) are
restricted to the dynamics of the oversaturated urban traffic networks only.
In this paper we suggest a model which describes the dynamics of urban traffic
networks involving the oversaturatedness as well as the undersaturatedness.
With the model containing non-linear terms of exponential type, an optimal
control problem is then formulated and an hierarchical optimization technique
based on Hirvonen and Hakkala (1979) is applied. The proposed model and
hierarchical optimization method are tested by means of several examples.
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2. Model and control of urban traffic networks

Congider the problem of controlling signals of a traffic network of the type
shownin Fig. 1. Leti=1and ¢=2indicate the horizontal traffic flow direction
and the vertical direction, respectively. For each discrete-time k, let g;(k)
denote the arrival rate of vehicles in the lane of direction i and g,(k) the averaged
departure rate over the duration of cycle time C. If we let [ be the loss time
due to the amber phase, &; the duration of the green phase in the direction i and
@, the duration of effective green, then the relation

C=0G+G+1=8,+1 n
holds.
i=2
PALY
i=1,q,(k gl
R

Figure 1. One-way no-turn intersection,

Define the state variable 2, (k) to be the number of vehicles which are waiting
at time % to pass the intersection in the lane of direction i. Then, for the given
cyele time C, it is easily shown that the evolution process of the states can be
described by (Singh and Tamura 19874)

e+ D)=z, k) +q k) —F, k), =1,2, k=0,1, .., k—1 (2)

Here %, is the final time of the control duration.

Now consider two phenomena of the traffic networks such as under-
‘saturated and oversaturated flow, In the case of the oversaturated traffic
flow, the state queue x,(k) in the direction ¢ exists even at the end of the green
interval started at the timek. However, in the case of the undersaturated flow,
the sum of the state queue x,(k) and input queue ¢,(k) in the direction ¢ can be
eliminated during the green phase of the direction ¢. To describe these two
phenomena of the traffic flows more specifically, define the control variable u(k)
to be the percentage of ‘ green ’ over C' in the direction 5. It is assumed that
the averaged departure rate §;(k) can be given by the relationship

Falk) = Sy(k, x,(k), g,(k))uqlk) 3)

where S,(k, z,(k), g;(k)) is the output flow rate. It is further assumed that
8,(k, k), q;(k)) is modelled by the relation

5. b, 0k =S 1-exp { -k, LN @
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where S, is the saturation flow rate in the direction i. That is, S is the
maximum number of vehicles which can pass through the intersection per cycle
in the direction ¢ if the signal in this direction is all the available green during
one cycle time. K, and X, are positive real constants to be determined by the
road capacity. Then, we find that eqns. (2) to (4) would describe the dynamics
of the urban traffic flows such as undersaturatedness and oversaturatedness in
the following sense. As shown in Fig. 2, if the sum of the state queue and the
input queue in the direction 7 at the instant & exceeds some threshold value X,
then 8,(k, ,(k), g;(k)) will be at most 8. This implies that the road in the
direction ¢ becomes oversaturated at the instant k. However, if the sum of the
state queue and the input gueue in the direction ¢ at the instant & does not
exceed X,,, the output flow rate, S,(k. x,(k), g,(k)), would be less than §; and
thus depends on the exponential function of the sum of the state queue and the
input queue. This implies that the road in the direction i is undersaturated at
the instant k. Therefore, X;, and K, should be determined so as to accommo-
date these situations.

Si(k)

Xic x; (k) +q (k)
Figure 2. A model for the output flow rate.

Remark 1

The experimental traffic data in Lincoln Tunnel quoted by Greenberg
(1959) as well as the Edie—Underwood’s model (Edie 1961) justifies our choice
of the output flow rate S;{k, ;(k), 9,(k)) in eqn. (4) as an exponential function
of the state queue and the input queue. Similar modelling may be found in
Lemieux (1978), in which an exponential type of output flow transfer curve is
utilized to control the switched telephone traffic flows. :

Now, from eqns. (1), (3) and (4), it follows that

zi(k+ 1) =z, (k) + g,(k) — 7, (k)
=x,(k) + q,(k) — Sy, z,(k), g, (k))u (k) (8)
fori=1,2,%k=0,1,..., k-1, and
C(Gh+ G [
) +uy(l) =t =1 - 5= 0, (8)

where @, is the normalized effective green, i.e. G,=@,/C. Following Singh
and Tamura (1974), we require that the state and control variables be subject
to the inequality constraints

Osxi(k)gxi,max, k=0, 1,.-.,kf, i=1,2 (7)
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and
ui’mm-.{ui(k)ﬁui_mux, k=0, l, ...,kt""l, i"—‘l, 2 (8)
For the interconnected road as shown in Fig. 3, the output, i.e. the averaged
departure rate g,(k) in the lane of direction i =1, becomes the delayed input of
the lane of i=3. The model in this case can be obtained by incorporating a

delay element (Lim et al. 1981). To be specific, let d denote the delay time
during which the output §,(k) becomes the input. Further let

d=(0+a) (9)

SPALY Qg tk)

(8)

gy (A _qt0)

gk

CPALY Qalk)
Figure 3. A model for the interconnected road.

where 8 is an integer and 0<a <1. Then

ga(k)= (1 —a)S,(k— 8, z,(k— 8), g, (k — 8)yu,(k— 6)
+a8,(k—0+1, 2,(k—0+1), gy(k— 8+ L)uy(e—0+1) (10)

Assuming for simplicity, that d=C (=1, a=0), the traffic flow process of the
interconnected road in Fig. 3 can be described in state variables as

a,(k+1) 1 0 0 0]k
zk+1)| [0 1 0 0]} zy(k)
2yk+1) [0 0 1 O] as(k)
2&k+1] Lo 0 o 1|k
— 8k, (), 7,(k)) 0 0 0 )
+ 0 — 8y(k, z3(k), ga(k)) 0 0 uy(k)
0 0 — 84k, a4(k), qalk)) 0 y(k)
0 ‘ 0 0 — 8y (k, xy(k), galk)) || walk)
0 0 0 0[wk-17] [a®)
0 . 0 0 O} ugk—1) ¢a(k)
g1, eyte—1), g1 0 0 o fl -1 |* o |4
0 0 0 oflude~-1] gk



Urban traffic networks 817

Thus, in general, the traffic flow process of a complex interconnected
network can be described by a non-linear difference equation with delays in the
controls of the form

g
zk+ ) =Exk)+ Y, Bikyulk—-j)+ck), k=0,1,... k-1 (12)
i=o

where x(k) is the » x 1 state vector, E, is an n x n identity matrix, 8 is the largest
integer unit of time delay in the overall networks, Byk) (j=0,1,..., 8) are
n x n matrices which inelude non-linear components S,(k— 7, 2,k — 7}, ¢;(k—3)),
u,(k) is the n x 1 control vector and ¢{k) is the n x 1 vector of inputs denoting the
incoming flow rate from the outside of the network.

Figure 4. Two-way intersection road.

In eqn. (12), the dimension of the control vector is made equal to that of the
state vector for ease of computation, although its dimension is usually reducible.
For example, in the case of a two-way intersection road as shown in Fig: 4, the
dimension of the control vector [u,, u,, us, %,]T is made equal to that of state
vector [x;, 2, &3, 2,]T though u,=u, and u,=wu, Thus, in the formulation of
eqn. (12), some components u;(k) and u,{k) of the control vector u(k) may be
identical

uy(k)=wuy(k), andfork=0,1, ..., k1, for some i and j (13)
For future development, let us define I to be the set defined by
I={(, j)|u;le) =uyk), fork=0,1,.. . k—1}

and let & be the number of elements in 1.

Also observe that, as shown in eqn. (8), the sum of some control components
at each intersection is equal to the normalized duration of the effective green.
To be specific, let ¢ be the number of traffic junctions for the green traffic
network. At an arbitrary jth traffic junction, let M, be the set of the indices
my such that the controls u,, (k) satisfy

Y ou,k)=0G, j=1,2,..8 £=0,1,2, .. k-1 (14)
nyeMy
In (14), the values of u, (k) are the controls associated with the jth traffic
junction and are different from each other.
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Let the cost functional be
k=1
J=% g:lo {lzte+ 1) §+ k)| %} (15)

where ||+ || denotes the euclidean norm, @ and R are n x n positive semidefinite
and definite diagonal matrices, respectively. Then the optimal control problem
for traffic networks can be formulated as follows.

2.1. An optimal control problem (p)

Find an (optimal) control sequence u{0), (1), ..., u(k,— 1) for the system
described by eqn. {(12) in such a way that the cost functional J in eqn. (15) is
minimized subject to the inequality constraints in eqns. (7), (8), (12) and (14).

Remark 2

Singh and Tamura (1974) developed a simple linear discrete-time model to
describe the dynamic behaviour of an oversaturated urban road traffic network.
However, in their model, a contradictory situation may occur in the sense that
an optimal control scheme for & given problem is not correctly obtained even
though it exists. An example was given by Lim et al. (1881). Because they
utilized & constant saturation flow rate S, as the output flow rate S;(k, z,(k),
u,{k)) even for an undersaturated intersection, the averaged departure rate was
calculated as being greater than the real one, and thus it might lead to a non-
optimal control strategy. Lim et al. proposed a new model of an oversaturated
urban traffic network to remedy the shortcomings of Singh and Tamura’s model.
To be more specific, they had used a constant-output flow rate as in Singh and
Tamura’s model, but they employed an inequality constraint on the state
variable avhich is different from that of Singh and Tamura. In the model of
Lim et al., the existence of the optimal solution is guaranteed only when the
sum of the input queue exceeds the sum of averaged departure rates in each
direction during the optimization interval. Thus, the model of Lim e al. is
applicable only to the oversaturated traffic networks as illustrated in the
Appendix.

3. A hierarchical optimization method

In this section, a hierarchical optimization method is suggested to solve the
problem (p) in § 2. This method is based upon & prediction-type two-level
method of Hirvonen and Hakkala (1979), which was used for an optimal control
problem of non-linear systems. We use the idea of decomposing the problem
with respect to time to handle the time delay (Tamura 1975). Furthermore, as
given by Lim et al. (1981), for ease of computation the dimension of the control
variables is made t0 be equal to that of the state variables as in problem (p).
By doing this in addition to time decomposition, the subproblems can be further
decomposed into simple quadratic problems which have only two variables
z,(k), u;(k) and linear constraints in equs. (7) and (8). Inthis way, lower-level
subproblems are made easy to handle.
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To employ a prediction-type two-level optimization method of Hirvonen and
Hakkala (1979), we introduce additional variables x*(k) and u*(k) to predict the
non-linear term B,(k) in eqn. (12). Then the problem (p) can be modified as the
following problem (p*).

3.1. Opitmal control problem (p*)
Find an optimal control sequence (0}, u(1), ..., u{k,~— 1), while minimizing
the cost function J in eqn. (15) subject to the following constraints

(i) z(k+1)= B2(k) + _iﬂ By*(kyuk — j) +e(k) (16)

where the entries of B,*(k) may include 8;*(k — j) given by

S*k— ) =84 [1 —exp { - K, xi*(k_j?;i*(k_j)}] (17)
(ii) (k) =z * (k) . (18)
(iii) (k) = u,* (k) (19)

and eqns. (1), (8), (13) and (14).

Here, note that the problem {p*) reduces to the problem (p) if 2;*(k) and w,*(k)
could be found such that the constraints in eqns. (18) and (19) are satisfied.
For the modified problem (p*) let us write the lagrangian L as

ke~1
I- 3 [%nxm1)||3+&||u(k)ui+pwk){—m(ic+ 1)+ Eyalh)

+

@, fe

B*(kyuik) + c(k) }+ 2 , Buyle){u; (k) —us(k)}

4~ itMe

+
j=1

(k) { PRSCE Ge} AT (RN k) — (8}
+A,T(k){u(k)—u*(k)}] (20)

where n x 1 vectors p, ), and ), and scalars 8, and r; are multipliers. Define g
and r as
B£sx K, dimensional vector whose elements are 8,;(k}

for (i, j)el and k=0, 1, ..., k-1,
r &t x K, dimensional vector whose elements are r,(k)

for j=1,2,...,tandk=0,1, ..., k,—1. Also, let us define the dual function ¢ :
X x U x X*x Bk x Rixke x X* x U*> D(¢)—R for the modified problem

dlx*, u¥, p, B, 7, Ay, Ag)= min Lz, u, z*, w*, p, B, v, AL Ag) (21)
(o, w)eX x U

subject to eqns. (7) and (8) with

D(d)={{x*, u*, p, B, 1, Ay, X)eX x U x X*x Roxiepx Rixtyx X* x U*|
the minimum in eqn. {20) exists} {22)
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where z*cX, u*clU, p, \,eX*, \elU*, BeR>* and re R%*1, and X* and U* are
dual spaces of the euclidean space X and U, respectively, For each
(@*, u*, p, B, r, A, A)eD($) define the set p(x*, u*, p, 8,1, AL A X x U as
follows

'u'(x*! u*! p) B’ ?', Al! A)
= {(z, u}eX x Ul|the minimum in eqn. (21) is attained as (x, u)} (23)

Furthermore, let
A={(m, v)eX x U|(=, u) satisfy eqns. (7), (8), (18) and (14)} (24)

Then it follows from the result of Hirvonen and Hakkala (1979) that, for
(m*oa u*o’ PO; lgos )‘10’ Azo)ED(¢)v (xo’ u")eﬂ(x*o; u*us Po! 4BD= 7-0, ‘\10: )‘20) and 4 <
D(g(+, -, 2% BY% 7% A0, A%), if ak)=a2*(k), u(k)=u*(k) and if for all
(@*(k), w*(k))ed, H(a*0, u*, po, O 7O, A0 A0 < ik, u*, po, B°, 19, A0 A0,
then the problem (p) has a solution given by (29, 4% and furthermore ¢ has a
saddle point at (x*?, u*?, p0 B9, 9, A, A%). Thus the strategy for finding the
optimal point of the dual function, which yields the solution («?, 4°) to the prob-
lem (p), is to find & saddle point of the dual function (Hirvonen and Hakkala
1979). _

To find the minimum in eqn. (21) more effectively, it may be necessary to
use the decomposition method. Note that, as given by Lim et al. (1981}, the
lagrangian L in eqn. (20) is additively separable with respect to (k) and (k)
for given x;*(k) and u,*(k), and also note that the lagrangian can be decomposed
with respect to time £ as

&
L= Y Lz, u, 2% u*,p, 8,7 M Ay (25}
k=0

where, for k=0
Ly = }[|u(0)] 2 + PT(0){ B,.(0) + By*(0)u(0) +c(0)}
t
+ ¥ By(0M{u(0)—u0)}+ ¥ n(O){ )X um(O)—Ge}
(4, Hel =1

- meM;

+ A T(0)((0) — 2*(0)) + A T(0)(m(0) — u*(0)) (26)
fork=1,2, ..., ky—1

Ly =}|2®)|§ + H{|w®)] § - 2Tk — Da(k) + pT(k ) (k)
[
+MTk)k)+ X pTlk+ j)B*(kyulk) + “ ;;,d Bij®){us(k) — w(k)}

=0

¢ :
+ jzi rik) EM U (k) + AT (R)ulk) + pT (k) (k) — gl k)G,
— M) = AT (27)
and for k=k,

Ko = 4| 2ll) | § — 2T lhop ~ 1)x(ky) (28)
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Recalling that, for ease of computation, the dimension of the control variables

is made equal to that of the state variables and § and R are diagonal matrices,
it is easily shown that L, can be decomposed into the form of

N
Lk= _;1 L-ik(xi(k): ui(k)! xi*(k)zv ui*(k)! P(k); ﬁ(k): r(k)! /\1(]‘); )‘s(k)) (29)

Consequently, L can be decomposed as

Rt N
L= kg(l '_2;1 L’ik(xi(k)s ui(k)! x'i*(k)s u"i*(k): P, ﬁ: r, ’\1: )‘2) (30)

This leads to a prediction-type two-level algorithm in which for given
x*(k), u*(k), p, B, r, A, and A,, (%, + 1) x N independent subproblems are mini-
mized with respect to x;(k) and u,(k) with linear constraints eqns. (7) and (8),
and, at the second-level, predictions are made of a*{(k), u*(k), p, B, r, A, and A,
in order to improve them.

A coordination strategy for updating the values of z*(k), »*(k), p, B, 7, A,
and A, is proposed based on the gradients of the dual function. Specifically, a
two-level algorithm can be given as follows (see Fig. 5).

SECOND - LEVEL
IMPROVEMENT
P, Bp)’: AI1 nkz
X',U' X,U
k=0 kek
/Mm li, Min LL
k=0,i=4[  [keQ,i=N|  [ksky,i=1 K=Ky, i=N
Min Loy Min Loy Min Lic ' """ | Min Lk'N

Figure 5. Two-level computation algorithm.

Level 1 )
Fori=1, ..., N and k=0, 1, ..., ;—1, find 2,(k) and «,{k) such that L, in
eqn. (30) is minimized with inequality constraints in eqns. (7) and (8).

Level 2

Update x*, u*, A, and A, by the reinjection method and also update p, 8
and r according to the multipliers method of Hestenes (1969), i.e.

Vi =0 gives z*Hi(k)=x'(k) (31)
Vad=0 gives u*i(k)=ul(k) (32)
5 LB ME)uk)]

Vod=0 gives \i(k)= ¥

L3 l‘
T T |t ()

z* =yt
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o O[B;*(k)uik)]

Vad=0 gives A4 k)= jgﬂ P zr -l pik) (34)
pHE)=plk) + oy Vb 9
=pHk) + oy { —ak+ 1) + E 24 k) + iED B;l(kyul(k) +clk)} (35)
Bug 1) = By (B) + oo ()~ i), for (6, el ®9)
and
rAHUE) =1 k) + oy ( Yy um(k}——G,), for §=1,2,...,1¢ (37)
meM;

where [ is the iteration index and the step sizes, o; > 0, =1, 2, 3, are chosen to
maximize ¢ in each iteration.

Remark 3

As given by Hirvonen and Hakkala (1879}, the two-level optimization
strategy for finding & saddle point of the dualfunction ¢, which yields an optimal
solution to the original problem, can be designed with the aid of the gradients
of the dual function. In this case the solution is a stationary point of the
lagrangian of the modified problem,

Often it would be difficult to choose suitable initial second-level variables
to start. Some physical interpretation and computational experience of the
problem can be useful. In this type of problem, the computer time and the
number of second-level iterations may not be an effective measure for com-
parison, because they are quite dependent on the initial choice of second-level
variables.

4. Simulation resulis

In this section, two examples are illustrated to show the validities of the
results in § 2.

Example 1

Consider a simple one-way no-turn intersection as shown in Fig. 1. The
state equations can be written

zy{b + 1) =2, (k) — 8, (k, 2,(k), q1(k})ey (k) + qa (k) (38)
gk + 1) = wy(k) — Salk, 2(k), galk))ualk) + galk) (39)

where 8,(k, z,(k), ¢,(k)), i=1, 2, are given by
Stk ), k=S| 1-exp { - SEZEEL ] ga

Here, it is assumed that state and control constraints are given by
02 £ ui(k) £ 0'8, t= 1, 2 {41)
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and )
(k) + uglk) =1 (43)

Further, the cycle time C and loss time { are assumed to be 60 s and zero,
respectively.

The optimal control problem is as follows. Minimize J given by eqn. (15)
under the constraints in eqns. (38)—(43). The weighting matrices Q and R are

chosen to be
1 0 100 1)
Q= , R= (44)
0 1 0 1vo

Now, we congider the three cases of traffic phenomena which might oceur
frequently in an urban traffic area.

Case 1

The sum of the input queue lies between the minimum of the sum of the
output flow in each direction and its maximum. It can be easily shown that
the minimum of the sum of the output flows and the maximum are

min [8,(k, z,(k), ¢1(k)), Sylk, xy(k), g5(k))]
and
max [8y(k, z,(k), 9,(k)), Salk, x4(k), ga(k))]

respectively.

Case 2

The sum of the input queues exceeds the maximum of the sum of the output
flowjn each direction.

Case 3

The input queues in each direction vary with the elapse of time so that the
oversaturatedness and undersaturatedness of the traffic flow can exist con-
currently during the optimization interval.

Each of the above three cases is discussed below.

Case 1

In this case, we regard two traffic flows as the oversaturated and under-
saturated flow, respectively. The initial conditions and parameter values are
ghown in Table 1. The dual cost ¢ and primal cost J were

J=082x10% and ¢=0-82x10°

The optimal state trajectories and control sequences are given in Fig, 6 and
Table 2, respectively.
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. g4(k)

L4 Su 5 max 2!1:(0) £=0,1,2,3 Tie Kic
1 45 70 24 25 40 2-5
2 40 80 12 10 36 25

Table 1. The initial conditions and parameter values of Case 1 in Example 1.

x4 (k) xz(k)
20t 20}
10k T 10-—J_|_\_‘—‘
L | A - 1 1 1 L
o 1 2 3 4 % o ' 2 3 4 K

Figure 6. The optimal state trajectories for the oversaturated intersection of Case 1
in Example 1.

k 0 1 2 3

w(k) 0799 0669 0638 0643
uk) 0201 0-331 0362  0-357

Table 2. The optimal control sequences of Case 1 in Example 1.

Case 2

The initial conditions and parameter values are given in Table 3, and the
optimal state trajectories and control sequences are shown in Fig, 7 and Table 4,
respectively. At the optimum, the dual cost ¢ and primal cost J were

J=0235x10" and ¢=0-235x10¢

Case 3
We regard the input queues as time-varying ones as shown in Table 5. The
dual cost ¢ and primal cost J were ‘
J=0138x10* and ¢=0-138x 104

The optimal state trajectories are given in Fig. 8 and the optimal control
sequences are given in Table 6.

Example 2

Consider a model for the interconnected intersection in Fig. 3. Let (k)
and u,(k) be the state and the control variable, respectively, corresponding to the
intersection ©. The time delay between junction (A) and (B) is one eycle time,
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. g;(k)
i 8y Tymex %0 £=0,1,2,3 X, K,

1 50 70 22 25 50 25
2 4 60 20 20 440 25

Table 3. The initial conditions and parameter values of Case 2 in Example 1.

xq (ki xo(k)

20 go_l_,_,I

Figure 7. The optimal state trajectories for the oversaturated intersection of Case 2
in Example 1,

k 0 1 2 3

Uy (k) 0-579 0518 0524 0-519
uy(k) 0421 0482 0476 0-481

Table 4. The optimal control sequences of Case 2 in Example 1.

Then state equations for the traffic network are described by eqn. (11). In
eqn. (11), Sk, z,(k), g,(k)) is given by

Silk, k), ¢, ) =S [1 —exp { - K, w}] i=1,2,3,4 (45)
{0

Here, it is assumed that state and control constraints are given by

02 < u,k) < 08 (48)
0 <2, (k) < Ty maxs $=1,2, 3,4 (47)
ty (k) + uq(k) =1 ‘ (48)
and
wuglle) + mylk) = 1 | (49)

Further, the cycle time €' and loss time ! are assumed to be 60s and zero,
respectively. Here, the initial conditions and parameter values are given in
Table 7.
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i By Fmex WO a(0) oll) 6(2) @B8) X, A

1 50 70 22 25 26 15 15 45 25
2 40 80 20 20 20 12 12 34 26

Table 5. The initial conditions and parameter values of Case 3 in Example 1.

X1(k) Xa(k)
' |

30r 15+

L L

Figure 8. The optimal state trajectories for the oversaturated and/or undersaturated
intersection of Case 3 in Example 1.

k 0 1 2 3

w,(k) 0560 0506 0503 0-490
uglk) 0431 0494 0497 0510

Table 8. The optimal control sequences of Case 3 in Example 1.

The optimal control problem is the following. Minimize J given by eqn.
(15) under the constraints in eqns. (11) and (45)-(48). In eqn. (15), the
weighting matrices @ and R are chosen to be

1000 100 0 0 ©
010 0 0 100 0 o

@=lg 0 1 of * B=[ ¢4 "% 100 o0 (50}
00 0 1 0 0 0 100

The time interval k, is taken as &y, = 4.

The optimal control sequences were calculated for this problem using the
prediction-type two-level optimization method in §3. The dual cost ¢ and
primal cost J at the optimum were

J=0478%x10% and ¢=0478x10¢

The optimal state trajectoriés are shown in Fig. 9, and the optimal control
sequences in Table 8.
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_ . (k)

1 Si Zimex %(0) k=0,1,2,3 =z, K;
1 50 70 22 25 49 2:5
2 140 60 20 20 38 2.5
3 50 70 22 internal flow 46 2.5

75(1)=24
4 40 60 20 20 36 25

Table 7. The initial conditions and parameters in Example 2.

b
30

Xz (k)

30

L 1 L
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1 1 L

1
4

o 1 2 3 k 0 1 2 3 4 kK
Figure 9. The optimal state trajectories for the interconnected intersection in
Example 2.
k 0 1 ' 3
w(k) 0579 0520 0526 0-522
uglk) 0421 0480 0-475  0-478
ulk) 0516 0584 0-456  0-482
ufk) 0484 0418 0544  0-518

Table 8. The optimal control sequences in Example 2.

Remark 4

In Fig. 9, the queue lengths z,(k) (1=1, 2, 3, 4) increase even though the
optimal control strategies were applied. From this, we know that the minimi-
zation of the quadratic cost functional J in eqn. (15) does not guarantee full
utilization of the output flow rate because the cost functional J will tend to
penalize the excessive increase of the queue length in one direction, And, also,
these phenomena occur when the sum of the input queues is greater than that
of the output flows for a given intersection.

CON.

2G
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5. Conclusions

The control problem of traffic networks was investigated by suggesting a
new non-linear discrete-time model for traffic networks to describe the traffic
phenomena such as oversaturated and undersaturated traffic flows. Then the
prediction-type two-level hierarchical optimization method of Hirvonen and
Hekkala together with a decomposition technique were utilized to solve the
problem. In our model the output flow rate was modelled as an exponential
function of the sum of the state queue and input queue.

Appendix
Brief discussion of the model of Lim et al.

It will be shown that the model of Lim e! al. is applicable only to the
oversaturated traffic networks by investigating the existence of a solution for
their optimal control problem. For simplicity, consider a one-way ng-turn
intersection network in Fig. 1. Then the optimal control problem of Lim ef al,
(1981) can be formulated as follows, Find the control sequences %(0), u{1) and
4(2) while minimizing the cost function J given by

2 2

J=t L L e+ D+uh) (A1)
subject to
2yl + 1) = 2, (k) — 8ypu(k) + g, (k) (A2)
8ty (k) < 25(8) € T4, poax (A 8)
O<u (k)< 1 (A 4)
uy (k) +uy(k) =1 (A 5)

Now, for the above problem, we will consider the case of undersaturated traffic
behaviour.

. g,(k)

i Sil i, max -17,-(0) k=0,1,2
1 100 100 50 30

2 80 80 40 30

Table 8. The initial conditions and parameter values in Appendix.

Consider the initial conditions and parameter values in Table 9. Then,
from eqns. (A 3} and (A 5), we can obtain that at k=0

z,(0) -
1t

()<

05 (A 8)

and

2(0) _
S

U0} =1—12,(0)< 0-5 (A7)
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Thus from eqns. (A 6) and (A 7), u,(0) should be 0-5. With this value of ,(0),
obtain z,(1) and z,{1) from eqn. (A 5). Then

2y(1) =25(1) =30 (A8)

Now, from eqn. (A 4), we can obtain the inequality given by
0-626 < 1,(0) < 0-3 (A 9)

From eqn. (A 9), we know that there is no control sequence u,(0), u,(1) and
1,{2) which satisfies the constraints in eqns. (A 4)—(A 7).

We have shown that the model of Lim ef al. cannot be applied to the
undersaturated traffic networks.
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